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随机振动与温度耦合环境下 MEMS 陀螺仪
误差联合补偿技术研究∗

邹昕澎,李平华,支　 源,高忠峰,庄须叶

(山东理工大学机械工程学院　 淄博　 255000)

摘　 要:微机电系统(MEMS)陀螺仪因其低成本、小型化及高实用性的核心特性,在多个领域得到了广泛的应用,但在温度与振

动耦合的复杂环境下,会导致陀螺仪输出精度劣化。 在宽温域交变与持续振动激励的复合动态扰动下,陀螺仪输出信号中温度

漂移与振动误差相互混叠,导致传统单一因素补偿方法的误差抑制能力显著下降。 目前,针对温度变化与随机振动共存环境下

的系统误差补偿研究仍较为缺乏,相关技术手段尚处于空白状态。 为解决温振耦合干扰下信号混叠的问题,故提出一种基于虚

拟陀螺技术的变分模态分解-长短期记忆网络-改进的 Sage-Husa 自适应卡尔曼滤波( VMD-LSTM-SHAKF)误差补偿模型,首次

实现了温振耦合环境下 MEMS 陀螺的温度漂移与振动误差补偿。 该方法通过 VMD 从温振耦合信号中提取温漂多尺度特征并

滤除部分振动误差,结合 LSTM 动态补偿温度漂移,并使用改进的 SHAKF 算法对四陀螺仪阵列的补偿信号进行数据融合,进一

步抑制振动引起的随机误差,提高系统的整体输出精度。 设计了系统化的静态变温实验,采集了不同温度梯度与振动条件组合

下陀螺仪阵列的输出数据。 实验分析表明,经 VMD-LSTM-SHAKF 算法处理后,陀螺仪系统的 1σ 标准差降低至 0. 033
 

9° / s,角

度随机游走降低至 0. 555
 

8° / h ,与性能最优的单陀螺仪相比,误差降低 94. 32% 。 该研究为解决复杂环境下 MEMS 陀螺的误差

补偿问题提供了有效方案,对其工程化应用具有一定的参考价值。
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Abstract:Micro-electro-mechanical
 

system
 

(MEMS)
 

gyroscopes
 

have
 

found
 

widespread
 

application
 

across
 

various
 

fields
 

due
 

to
 

their
 

core
 

characteristics
 

of
 

low
 

cost,
 

compact
 

size,
 

and
 

high
 

practicality.
 

However,
 

their
 

output
 

accuracy
 

deteriorates
 

significantly
 

under
 

coupled
 

temperature-vibration
 

environments.
 

Under
 

combined
 

wide-range
 

temperature
 

variations
 

and
 

persistent
 

vibration,
 

temperature
 

drift
 

and
 

vibration
 

errors
 

overlap
 

in
 

the
 

gyroscope
 

output,
 

weakening
 

traditional
 

single-factor
 

compensation.
 

Currently,
 

research
 

on
 

systematic
 

error
 

compensation
 

under
 

coexisting
 

temperature
 

and
 

random
 

vibration
 

is
 

limited,
 

with
 

technical
 

solutions
 

still
 

lacking.
 

To
 

address
 

signal
 

aliasing
 

under
 

temperature-vibration
 

coupling,
 

this
 

paper
 

proposes
 

a
 

variational
 

mode
 

decomposition-long
 

short-term
 

memory-Sage-Husa
 

adaptive
 

Kalman
 

filter
 

(VMD-LSTM-SHAKF)
 

error
 

compensation
 

model
 

based
 

on
 

virtual
 

gyroscope
 

technology,
 

achieving
 

simultaneous
 

compensation
 

of
 

temperature
 

drift
 

and
 

vibration
 

errors
 

in
 

MEMS
 

gyroscopes
 

for
 

the
 

first
 

time.
 

In
 

the
 

proposed
 

method,
 

VMD
 

is
 

employed
 

to
 

separate
 

the
 

coupled
 

signal,
 

extracting
 

temperature
 

drift
 

components
 

while
 

suppressing
 

vibration
 

interference.
 

An
 

LSTM
 

network
 

is
 

then
 

used
 

to
 

compensate
 

the
 

temperature
 

drift,
 

and
 

an
 

improved
 

SHAKF
 

fuses
 

the
 

outputs
 

of
 

a
 

four-gyroscope
 

array
 

to
 

further
 

suppress
 

random
 

vibration
 

errors
 

and
 

enhance
 

overall
 

accuracy.
 

A
 

static
 

temperature-varying
 

experiment
 

was
 

designed
 

to
 

collect
 

gyroscope
 

array
 

data
 

under
 

different
 

temperature
 

and
 

vibration
 

conditions.
 

Experimental
 

results
 

show
 

that
 

after
 

VMD-LSTM-SHAKF
 

processing,
 

the
 

system′s
 

1σ
 

standard
 

deviation
 

decreases
 

to
 

0. 033
 

9° / s,
 

angle
 

random
 

walk
 

to
 

0. 555
 

8° / h ,
 

with
 

a
 

94. 32%
 

error
 

reduction
 

compared
 

to
 

the
 

best
 

single
 

gyroscope.
 

This
 

study
 

provides
 

an
 

effective
 

solution
 

for
 

MEMS
 

gyroscope
 

error
 

compensation
 

in
 

complex
 

environments,
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offering
 

engineering
 

application
 

insights.
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0　 引　 　 言

　 　 微 机 电 系 统 ( micro-electro-mechanical
 

system,
 

MEMS)陀螺仪因其体积小、成本低、功耗低等优点[1] ,在
导航、姿态控制、消费电子等多个领域得到广泛应用[2-3] 。
然而,MEMS 陀螺仪输出信号的精度和稳定性仍然面临

诸多挑战,如在航空航天器发动机舱、车载武器平台等典

型应用场景中,MEMS 陀螺需同时承受时变温度场与强

振动等多物理场耦合作用,其硅微机械结构产生的非线

性热应力会导致驱动模态频率漂移和检测轴正交耦合误

差,最终使陀螺精度劣化,从而影响其在导航、姿态控制

和消费电子等领域的应用效果。 这些误差不仅降低了系

统的可靠性,还限制了 MEMS 陀螺仪在高精度应用中的

性能。 传统温控封装方案虽能抑制单一温度干扰,但会

显著增加系统质量与制造成本,难以满足现代装备轻量

化、低成本的发展需求。 因此,如何在保证 MEMS 陀螺固

有成本优势的前提下,通过智能补偿算法突破多物理场

耦合干扰下的精度瓶颈,已成为拓展其在恶劣工况下应

用范围的关键技术挑战。
目前,提高 MEMS 陀螺仪输出精度的方式主要有两

种途径:硬件改进和软件优化。 提高 MEMS 陀螺仪精度

的一种方法是设计新的陀螺仪结构和改进加工工艺。 这

种方法通过优化陀螺仪的机械设计[4] 、制造工艺[5] 和控

制检测电路[6-8] 等,从根本上提升其性能。 例如,采用更

高精度的微加工技术可以减少制造误差,优化结构设计

可以提高抗振动能力和温度稳定性。 然而,这种方法通

常需要较长的开发周期和高昂的研发费用。 开发新型

MEMS 陀螺仪需要进行大量的实验和测试,以确保其在

各种环境条件下的可靠性和稳定性。 因此,尽管硬件改

进能够从根本上解决精度低的问题,但其高成本和长周

期限制了其广泛应用。
提高 MEMS 陀螺仪精度的另一种方法是通过软件优

化,特别是利用机器学习算法和虚拟陀螺技术。 这种方

法通过对现有硬件的输出信号进行处理,来提高其精度

和稳定性[9] 。 近年来,机器学习算法在信号处理领域得

到了广泛应用[10-14] 。 通过训练模型来识别和补偿陀螺仪

输出信号中的误差,机器学习算法能够有效提高测量精

度。 针对温度漂移,2022 年 Wang 等[15] 提出了一种基于

卷积神经网络-长短期记忆神经网络(convolutional
 

neural
 

network-long
 

short-term
 

memory,
 

CNN-LSTM) 和粒子群优

化-支持向量机( particle
 

swarm
 

optimization-support
 

vector
 

machine,
 

PSO-SVM)的改进变分模态分解-极值学习机

(variational
 

mode
 

decomposition-extreme
 

learning
 

machine,
 

VMD-ELM)算法,角度随机游走从 2. 097 8×10-5 降低至

1. 498 5×10-6。 2024 年 Qi 等[16] 建立了一种新颖的时延

估计技术(time
 

delay
 

estimate,
 

TDE),采用径向基函数神

经网络(radial
 

basis
 

function
 

neural
 

network,
 

RBFNN)来准

确识别其参数。 Ouyang 等[17] 提出基于变分模态分解-样
本熵 - 小波阈值去噪 ( variational

 

mode
 

decomposition-
sample

 

entropy-wavelet
 

threshold
 

denoising,
 

VMD-SE-
WTD)和长短期记忆网络-支持向量机-深度信念网络

(long
 

short-term
 

memory-support
 

vector
 

machine-deep
 

belief
 

network,
 

LSTM-SVM-DBN)预测的温度补偿模型。 Zhang
等[18] 提出了一种基于改进的自适应噪声完全系综经验

模态分解 ( improved
 

complete
 

ensemble
 

empirical
 

mode
 

decomposition
 

with
 

adaptive
 

noise,
 

ICEEMDAN)、样本熵、
时频峰值滤波、非支配排序遗传的混合算法进行温度补

偿角度随机游走从 0. 531 076° / h / Hz降低到 6. 658 94×

10-3° / h / Hz 。 这些算法能够捕捉信号中的复杂模式和

非线性关系,从而实现更为精确的误差补偿[19-23] 。 针对

随机误差,2019 年杨菊花等[24] 提出了一种基于改进经验

模态分解(empirical
 

mode
 

decomposition,
 

EMD)的去噪方

法,将角度随机游走降低了 81% 。 2003 年 Bayard 等[25]

首次提出使用多个 MEMS 陀螺仪构建阵列,并通过数据

融合方法优化了数据精度,虚拟陀螺技术通过融合多个

陀螺仪的输出信号,利用数据融合算法来提高整体精

度[26-28] ,这种方法可以有效减少单个传感器的随机误差

和系统误差,通过构建虚拟传感器阵列,研究者能够在不

显著增加硬件成本的情况下,显著提高系统的输出精

度[29-34] 。 2017 年柯熙政等[35] 提出了一种基于小波的数

据融合算法,将数据标准差提升了一个量级。 2024 年

Zhuang 等[36] 提出了一种基于改进的 Sage-Husa 自适应卡

尔曼滤波器(sage-husa
 

adaptive
 

Kalman
 

filter,
 

SHAKF)的

数据融合算法,提升计算精度的同时也减小了传统方法

的计算量。 现有方法均证明了机器学习与虚拟陀螺技术

对陀螺仪温度误差与随机误差补偿的有效性。
尽管现有研究在温度漂移与随机误差补偿领域已形

成较多成果,但针对温度变化与随机振动共存环境下的

相关研究仍处于空白状态。 为了提高陀螺仪在包含温度

变化与振动环境下的性能,提出了利用变分模态分解-长
短期记忆网络 -改进的 Sage-Husa 自适应卡尔曼滤波

( variational
 

mode
 

decomposition-long
 

short-term
 

memory-
Sage-Husa

 

adaptive
 

Kalman
 

filter,
 

VMD-LSTM-SHAKF)优

化算法与虚拟陀螺技术解决温振耦合与阵列中陀螺仪差

异化干扰下的误差补偿。 主要创新点为:
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1)温振复合干扰的协同补偿框架:突破传统单因素

独立处理的局限,构建了温度漂移与随机振动耦合干扰

的协同补偿体系。 通过分解温度低频模态与振动高频噪

声的复合信号,结合时序预测与动态滤波的交互机制,实
现两种干扰的物理解耦与联合抑制,解决了复杂环境下

误差非线性叠加的难题。
2)温度-振动复合噪声协同补偿方法:针对实际应

用中温度与振动耦合干扰的难题, 提出 VMD-LSTM-
SHAKF 协同框架,通过信号分解、深度学习预测与动态

滤波融合,实现复合噪声的分离与联合补偿。
3)多源数据融合增强环境适应性:结合虚拟陀螺仪

技术,通过动态加权融合策略,显著提升系统在宽温域与

强振动下的稳定性,解决陀螺仪阵列中不同陀螺温度漂

移的差异性,使角度随机游走降低 94. 47% 以上,稳定性

超越单一陀螺仪在无干扰环境下的性能。
为了验证算法在振动与温度综合干扰下的补偿效

果,设计了-40℃ ~ 70℃宽温域与随机振动的复合环境实

验。 实验表明,温度漂移与振动噪声的耦合使陀螺仪角

度随机游走增加 47% ~ 57% 。 通过 VMD-LSTM-SHAKF
算法,VMD 分离温度低频模态与振动高频噪声,LSTM 预

测并补偿温度漂移,SHAKF 抑制振动随机误差,最终使

角度随机游走降低至 0. 555 8° / h ,1σ 标准差降低至

0. 033 9° / s,相较补偿前降低 94. 47% ,显著增强了陀螺仪

在复杂场景中的环境适应性,并且性能超越单一陀螺仪

在无干扰环境下的性能。

1　 陀螺仪误差模型分析

　 　 MEMS 陀螺产生误差的原因是多方面的,包括陀螺

本身结构设计中的工艺偏差、器件内部物理元件的变化

以及操作环境的影响等因素。 MEMS 陀螺仪的主要误差

为系统误差和随机误差,而温度漂移是 MEMS 陀螺仪中

难以消除的主要系统误差来源之一。 在随机振动环境

中,振动会通过机械耦合引入与科里奥利力响应频率相

近的噪声信号,导致检测模态中产生难以区分的误差分

量,进一步增大陀螺仪的随机误差。 更严重的是,温度变

化会加剧振动的影响,即:硅材料的热膨胀效应会改变陀

螺结构的谐振频率与刚度,而振动引起的机械应力又会

导致材料参数随温度漂移非线性变化。 这种温度与振动

的耦合作用使得误差机理更加复杂,显著降低了陀螺仪

在动态环境下的输出稳定性。
1. 1　 陀螺仪温度误差模型

　 　 MEMS 陀螺仪的核心材料为硅。 硅是一种热敏材

料,温度变化会导致材料的弹性模量、密度等参数变化与

电路元件(如电阻、电容) 的参数漂移,并且温度变化引

起的热膨胀或收缩会导致机械应力变化,最终导致陀螺

仪的谐振频率漂移。 MEMS 陀螺仪的谐振频率随环境温

度变化如式(1)所示。

ωn(T) = ωn(T0) 1 + 1
2
kE(T - T0)é

ë
êê

ù

û
úú (1)

其中,ωn
 (T0)为陀螺仪在室温 T0(T0 = 300

 

K)下的谐

振频率,kE 为硅材料弹性模量的温度系数,取值范围为

-7. 5×10-5 ~ -2. 5×10-5。 当环境温度 T 变化时,式(1)中

能够清楚表明温度对陀螺仪谐振频率的影响,谐振频率

的偏移不仅会降低陀螺的机械灵敏度,还会通过热应力

改变质量块的运动对称性,导致零偏温度系数增大。
1. 2　 陀螺仪随机振动误差模型

　 　 陀螺仪广泛应用于车辆、无人机等高振动环境。 车

辆行驶中的路面颠簸或无人机旋翼的机械振动会通过机

械耦合传递至 MEMS 陀螺仪,引发质量块的非线性谐振,
导致输出信号中叠加高频噪声,使测量精度显著下降。
由于振动频谱的动态变化与传感器响应的非线性特性,
传统方法难以精确建模与实时补偿,导致系统噪声抑制

效果受限。
MEMS 陀螺工作时,驱动方向的质量块在静电力的

作用下沿 X 轴做简谐振动,当系统有绕 Z 轴方向的角

速度输入时,检测方向的质量块受科氏力的作用沿

Y 轴做简谐振动。 在非理想情况下,制造过程中的尺寸

误差会导致驱动模态与检测模态的刚度系数和质量分

布发生变化,从而引发两模态固有频率失配。 这种失

配会打破理想正交条件,使驱动轴与检测轴的振动能

量通过机械结构耦合,导致科里奥利力信号中混入额

外的交叉干扰分量,最终表现为陀螺输出的零偏误差

和标度因子非线性。
驱动模态的动力学方程描述了陀螺仪内部振动结构

的运动。 假设振动结构是一个简化的质量-弹簧-阻尼

系统,其动力学方程如式(2)所示。

mdX
··

d + cdX
·
d + kdXd = Fd( t) (2)

其中,md 为驱动模态的等效质量,cd 为驱动模态的

阻尼系数,kd 为驱动模态的刚度,xd 为驱动模态的位移,
Fd

 ( t)为驱动模态的外部激励力。
检测模态用于感知科里奥利力引起的振动变化,其

动力学方程类似于驱动模态,如式(3)所示。

msX
··

s + csX
·
s + ksXs = Fs( t) + 2msΩX

·
d (3)

其中,ms 为检测模态的等效质量,cs 为驱动模态的

阻尼系数,ks 为检测模态的刚度,Xs 为检测模态的位移,
Fs

 ( t)为检测模态的外部激励力(包含环境中的随机振动

的加速度引起的力 Fa
 ( t)),Ω 为陀螺仪的旋转角速度。

科里奥利力是由于旋转运动引起的, 表达式如

式(4)所示。
Fc + 2msΩX

·
d (4)
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在实际应用中,MEMS 陀螺仪的输出信号会受到随

机振动误差的影响。 对检测模态的动力学方程进行拉

普拉斯变换,假设初始条件为 0,动力学方程如式( 5)
所示。

mss
2Xs(s) + cssXs(s) + ksXs(s) = Fs(s) + Fc(s) (5)

其中,Xs
 ( s)、Fs

 ( s)、Fc
 ( s)为 Xs

 ( t)、Fs
 ( t)、Fc

 ( t)的拉

普拉斯变换。
频率响应函数 H( s)描述了系统对输入的响应特性,

如式(6)所示。

H( s) =
(Xs( s))

(Fc( s) + Fs( s))
= 1

(mss
2 + css + ks)

(6)

在频率域,检测模态的输出 Xs
 ( s)如式(7)所示。

Xs( s) = H( s)·(Fc( s) + Fs( s)) (7)
随机振动会导致陀螺仪感受到不规则的线性加速

度,这些加速度会通过其引起的力 Fa
 ( t)影响检测模态

的外部激励力,从而影响检测模态,导致输出信号中出现

误差。

2　 联合算法

2. 1　 变分模态分解

　 　 在 1990 年代后期,Huang 等[37] 引入了 EMD 算法,用
于将信号递归分解为不同的模式,但其对噪声和采样的

敏感 性 限 制 了 应 用。 为 解 决 这 些 问 题, 2014 年

Dragomiretskiy 等[38] 提出了一种完全非递归的 VMD 模

型,该模型通过同时提取模式及其中心频率来重现输入

信号,并在傅立叶域中实现窄带先验。 VMD 方法将经典

的维纳滤波器推广到多个自适应频带中,利用乘法器方

法的交替方向方法进行优化,显示出对采样和噪声更强

的鲁棒性,VMD 原理图如图 1 所示。
VMD 的目标是找到一组模态{uk

 ( t)}及其对应的中

心频率{ωk},使得每个模态在解调到基带后变得平滑。
VMD

 

通过式(8)最小化目标函数,即:

min
{ωk},{ωk}

∑
k

δ( t) + j
πt( ) ∗(uk( t)e

- jωkt)
2

2
{ } (8)

其中,uk
 ( t)是第 k 个模态,ωk 是第 k 个模态的中心

频率,δ( t)是狄拉克函数,∗表示卷积运算,‖·‖2 表示

L2 范数,用于衡量信号的能量。
VMD 还需要满足信号重构的约束条件,即所有模态

的和应等于原始信号 f( t),如式(9)所示。

∑
k
uk( t) = f( t) (9)

VMD 使用拉格朗日乘子法和交替方向乘子法

(alternating
 

direction
 

method
 

of
 

multipliers,
 

ADMM) 来求

解上述优化问题。 通过引入拉格朗日乘子 λ( t),构建的

拉格朗日函数如式(10)所示。

图 1　 VMD 原理流程

Fig. 1　 VMD
 

schematic
 

flowchart

L({uk},{ωk},λ) =

α∑
k

δ( t) + j
πt( ) ∗(uk( t)e

- jωkt)
2

2

+

f( t) - ∑
k
uk( t)

2

2
+ 〈λ( t),f( t) - ∑

k
uk( t)〉 (10)

其中 α 是惩罚参数,〈·,·〉 表示内积。 在迭代求解

过程中,固有模态函数 uk、中心频率 ωk 和拉格朗日乘

数 λ 分别通过式(11) ~ (13)更新。
ûn+1
k (ω) ←

f(ω) - ∑
k

i = 1,i < k
ûn+1
i (ω) - ∑

k

i = 1,i > k
ûn
i (ω) +λ̂n(ω) / 2

1 + 2α(ω - ωn
k)

2 (11)

ωn+1
k ←

∫∞

0
ω ûn+1

k (ω) 2dω

∫∞

0
ûn+1
k (ω) 2dω

(12)

λ̂n+1(ω) ← λ̂n(ω) + τ( f̂ (ω) - ∑
k
ûn+1
k (ω)) (13)

其中,参数 τ 表示噪声阈值,它影响信号分解过程的

准确性。 符号f̂ 、û和λ̂分别对应于变量 f、u和 λ的傅里叶

变换。 持续迭代直到满足式(14) 所示。
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∑
k

‖ûn+1
k - ûn

k‖
2
2 / ‖ûn

k‖
2
2 < ε (14)

其中, ε 为设置精度。 迭代结束后,得到陀螺仪原始

信号的全套固有模态函数 ( intrinsic
 

mode
 

functions,
 

IMFs)。
通过交替优化{uk}、{ωk}和 λ,VMD 能够有效地分

解信号。
VMD 的数学模型通过变分原理和优化方法,能够将

信号分解为一组具有特定频率特性的模态。 其鲁棒性和

自适应性使其在处理复杂信号时具有显著优势。

2. 2　 长短时记忆神经网络

　 　 1997 年 Hochreiter 等[39] 认为,随着误差在时间维度

上传播,循环神经网络(recurrent
 

neural
 

network,
 

RNN)可
能会使梯度消失,从而导致长期依赖问题。 人们可以选

择性地记忆信息。 通过门控激活函数,LSTM 模型可以选

择性地记住更新的信息并忘记累积的信息[40-41] 。
LSTM 是一种特殊类型的 RNN,专门用于处理和预

测时间序列数据。 LSTM 能够有效地处理长期依赖问题,
保留重要的历史信息,并在各个时间步间进行动态选择,
从而适应序列数据中的复杂依赖关系。

LSTM 单元包含 3 个主要的门控机制(输入门、遗忘

门、输出门) 和一个记忆细胞。 每个门控机制都是通过

sigmoid 函数实现的,作用是选择性地通过或屏蔽信息,
LSTM 内部结构如图 2 所示。

图 2　 LSTM 内部结构

Fig. 2　 LSTM
 

internal
 

structure

　 　 1)
 

遗忘门决定了上一时刻的单元状态有多少保留

到当前时刻,遗忘门的输出计算如式(15)所示。
f t = σ(Wf·[h t -1,x t] + b f) (15)
其中 f t 是遗忘门的输出,σ 是 sigmoid 函数,输出值

范围在 0 ~ 1,Wf 是遗忘门的权重矩阵,b f 是偏置向量,
h t -1 是前一时刻的隐藏状态,x t 是当前时刻的输入,遗忘

门结构如图 3 所示。

图 3　 遗忘门结构

Fig. 3　 Oblivion
 

gate
 

structure

2)
 

输入门计算公式如式(16)所示。
i t = σ(Wi·[h t -1,x t] + b i) (16)
其中 Wi 是遗忘门的权重矩阵,b i 是偏置向量,遗忘

门结构如图 4 所示。
3)

 

接下来计算用于描述当前输入的候选细胞状态,
它是根据上一次的输出和本次输入来计算的,计算如

图 4　 输入门结构

Fig. 4　 Input
 

gate
 

structure

式(17)所示。
􀭾C t = tanh(WC·[h t -1,x t] + bC (17)
其中, WC 是候选细胞状态的权重矩阵。
4)

 

更新细胞状态计算如式(18)所示。
C t = f t·C t -1 + i t·􀭾C t (18)
记忆单元结构如图 5 所示。
5)

 

输出门计算如式(19)所示。
o t = σ(Wo·[h t -1,x t] + bo) (19)
其中, Wo 是输出门的权重矩阵。
LSTM 最终的输出,是由输出门和单元状态共同确定

的,如式(20)所示。
h t = o t·tanh(C t) (20)
输出门结构如图 6 所示。
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图 5　 记忆单元结构

Fig. 5　 Memory
 

unit
 

structure

图 6　 输出门结构

Fig. 6　 Output
 

gate
 

structure

2. 3　 改进的 Sage-Husa 自适应卡尔曼滤波

　 　 在技术框架中,改进的 SHAKF 算法承担着数据融合

与动态噪声抑制的任务,通过协方差匹配技术优化,并在

噪声估计器中加入了滤波收敛标准,用于确定该测量的

噪声是否发生了显著变化。 判断滤波器异常的判据如

式(21)所示。
eke

T
k ≤ αtr(E[eT

k ek)]) = αtr(HkP
-
k / k-1H

T
k +R̂k) (21)

其中, α 表示收敛准则的控制系数,且 α > 1,tr表示

矩阵的迹,ek 为新息序列,R̂k 为测量噪声协方差矩阵,
P -

k / k-1 为先验误差协方差,Hk 为观测矩阵。
当满足式(21)时判定滤波收敛,停止更新噪声协方

差矩阵。
该方法能够弥补传统 SHAKF 无法同时准确估计两

个噪声协方差矩阵、计算量大的缺点,并在提升计算精度

与实时性的同时,为复杂振动环境下的多源数据融合提

供了可靠保障。 改进的 SHAKF 大大提高了计算的精度

和实时性,配合陀螺仪阵列能够将陀螺仪角度随机游走

与零偏不稳定性均降低 88% 以上[36] 。 在“ VMD-LSTM-
SHAKF”协同架构中,经 VMD 分离出的温度漂移特征信

号与 LSTM 预测结果,利用改进 SHAKF 进行数据融合。
2. 4　 基于 VMD-LSTM-SHAKF 的去噪与预测误差补偿模型

　 　 随机振动环境中,机械振动噪声、电路噪声与环境干

扰等多源耦合噪声相互叠加,常使呈现缓变趋势的温度

漂移信号被高频噪声淹没,导致传统预测方法因特征提

取不完整而出现显著误差。 直接使用神经网络进行建模

时,噪声干扰会模糊温度漂移的时序特征,使得模型学习

到错误的映射关系,最终预测精度难以满足工程需求。
为突破这一技术瓶颈,提出一种融合 VMD、LSTM 与改进

的 SHAKF 的协同算法框架,通过三级处理机制实现对温

度漂移信号的精准预测与噪声抑制。
LSTM 直接处理经 VMD 分解后的特征模态,可完整

捕捉温度漂移的长期依赖关系,SHAKF 在后端对 LSTM
预测残差进行自适应噪声抑制,可有效抵抗振动干扰引

起的测量异常,避免噪声传播到时序模型内部。 SHAKF
前置会通过状态估计方程对信号进行平滑,导致温度漂

移的低频缓变成分被高频噪声抑制过程削弱。 基于

SHAKF 的数据融合本质是降维操作,会丢弃原始信号中

与漂移相关的弱相关特征, 综上, 采用 VMD-LSTM-
SHAKF 处理虚拟陀螺的温度误差与振动误差。

VMD 作为预处理核心,能够基于频域约束将含振动

噪声的原始信号自适应分解为若干本征模态函数

(IMF),在有效分离温度漂移相关低频特征的同时消除

振动误差干扰。 与传统经验模态分解相比,VMD 通过构

建变分模型最小化各模态带宽和,避免了模态混叠问题,
确保温度漂移信号不受振动噪声的污染。 随机振动产生

的高频噪声通常分布在特定频带内,VMD 通过频域划分

将信号分解为不同带宽的 IMF 分量,其中与温度漂移相

关的趋势项多集中在低频模态,而振动误差对应的高频

噪声则被分离到高频 IMF 中。 通过相关性分析筛选与温

度传感器输出高度关联的低频 IMF 分量,能够剔除振动

误差主导的高频模态,构建纯净的温度漂移特征序列,为
后续建模提供无振动干扰的高质量输入,从根本上解决

强噪声环境下振动误差掩盖真实信号的难题。
LSTM 凭借独特的门控机制,成为处理温度漂移时序

数据的理想选择。 MEMS 陀螺仪的温度漂移本质是包含

长期依赖关系的非线性过程,如温度滞后效应、器件老化

趋势等,传统循环神经网络( RNN)因梯度消失问题难以

捕捉此类特征。 LSTM
 

的输入门、遗忘门和输出门能够

选择性保留历史状态信息,通过细胞状态传递链长期存

储温度变化的累积效应,并通过多层隐含层神经元的非

线性变换,构建温度漂移与变量间的复杂映射关系,实现

对未来漂移趋势的精准外推,弥补了传统模型在时序动

态建模上的不足。
针对随机振动环境下量测噪声的非平稳特性,改进

的 SHAKF 通过引入新的判据,实时调整量测噪声协方差

矩阵,解决了传统卡尔曼滤波因固定参数导致的滤波发

散问题,并且解决了传统 SHAKF 计算量大,实时性差的

问题。 该算法能够快速抑制振动冲击导致的噪声突变干

扰,同时将 LSTM 预测结果与陀螺仪原始输出进行最优
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融合,既保留模型预测的趋势信息,又利用实时量测数据

修正随机波动误差,实现对动态环境的强鲁棒性适应。
图 7 为陀螺仪温度误差补偿与振动误差补偿模型示

意图。

图 7　 陀螺仪温度补偿模式示意图

Fig. 7　 Schematic
 

of
 

gyroscope
 

temperature
 

compensation
 

mode

3　 实验验证

　 　 为了验证 VMD-LSTM-SHAKF 温度漂移与振动误差

补偿模型的有效性,实验选取 TDK
 

InvenSense 公司的

ICM-42605 传感器进行了振动环境下的高低温实验,该
传感器集成了 3 轴陀螺仪和 3 轴加速度计,广泛应用于

消费电子、物联网和工业设备中。 图 8 为实验环境布置

和虚拟陀螺结构。
实验装置中,高低温试验箱可模拟-40℃ ~ 70℃的温

度环境,高低温试验箱中 Y 轴随机振动的振动频率为

25 ~ 50
 

Hz,振动位移为 5 ~ 12
 

μm,对应的加速度均方根

值为 3. 7 ~ 8. 9
 

m / s2,模拟车载低速行驶场景,振动环境

符合国际标准 ISO
 

16750-3 中‘乘用车非驱动轮区域’中

30~ 50
 

Hz 频段振动加速度均方根值≤10
 

m / s2 的振动要

求[42] 。 为了证实误差补偿模型的重要性,测试了陀螺仪

阵列在-40℃ ~ 70℃温度范围的性能,用于探究温度变化

对传感器的影响。 使用 STM32 单片机轮流采集 4 个

MEMS 陀螺仪测量角速度,系统采样频率为 100
 

Hz,使用

振动传感器检测环境振动信息,使用电脑作为数据采

　 　 　 　

图 8　 实验环境设置与传感器系统

Fig. 8　 Experimental
 

environment
 

setup
 

and
 

sensor
 

system

集设备实时采集传感器数据,为后续分析提供基础,以综

合研究温度与振动对传感器测量精度的影响,进而验证

模型对温度漂移与振动误差的补偿效果。
首先,将陀螺仪阵列在室温下供电 90

 

min。 同时,
将温度设置为冷却至- 40℃ ,并让其在此温度下稳定

30
 

min,以 10℃ 的间隔收集陀螺仪阵列在-40℃ ~ 70℃
温度范围的输出数据。 为了保证陀螺仪与温控箱的温

度精确同步,以及保持陀螺仪漂移信号的稳定性,将陀

螺仪在每个固定温度点停留约 30
 

min。 在此期间进行

连续数据采集,以保证输出数据准确反映陀螺仪在不

同温度条件下的性能。 数据预处理阶段采用 200
 

ms 滑

动窗口平滑,以削弱瞬时脉冲噪声对后续 VMD 分解的

干扰,平滑后数据仍保持原采样频率输出。 5 组温度实

验,比较分析显示,收集到的数据具有高度的一致性。
因此,选取其中一组陀螺仪 Y 轴数据集进行进一步的

分析和处理。 陀螺阵列原始数据如图 9 所示,复杂环

境变化干扰下与无环境干扰下陀螺性能参数对比如

表 1 所示。
采用 VMD 对陀螺仪输出信号进行分解,为确保每个

IMF 分量均具有显著的物理意义而非无意义的噪声,能
量占比阈值为 2% ,为避免模态混叠,确保各分量在频域

上充分分离,要求分解后的中心频率必须严格单调递减,
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图 9　 陀螺仪输出的原始数据
Fig. 9　 Gyroscope

 

raw
 

data

表 1　 复杂环境变化干扰下陀螺仪性能与无环境干扰下

陀螺性能参数对比

Table
 

1　 Comparison
 

of
 

gyroscope
 

performance
 

under
 

the
 

interference
 

of
 

complex
 

environmental
 

changes
 

and
 

gyro
 

performance
 

parameters
 

without
 

environmental
 

interference

陀螺

编号

变温与随机振动的

复合环境下
无环境干扰下

1σ 标准差 /
( °·s-1 )

角度随机游走 /

( °·h
- 1

2 )

1σ 标准差 /
( °·s-1 )

角度随机游走 /

( °·h
- 1

2 )

陀螺 1 1. 011
 

6 11. 641
 

0 0. 279
 

2 5. 708
 

0

陀螺 2 0. 631
 

7 10. 055
 

2 0. 254
 

4 4. 463
 

0

陀螺 3 0. 597
 

1 11. 755
 

0 0. 339
 

5 6. 145
 

7

陀螺 4 1. 135
 

4 10. 893
 

9 0. 259
 

9 4. 580
 

0

且相邻模态的最小频率间隔需大于预设的 0. 1
 

Hz。 VMD
将复杂信号成功分解为 5 个本征模态函数 ( IMF1 ~
IMF5),如图 10 所示。 这些 IMF 组件代表了信号的不同

频率带:低频组件主要反映了陀螺仪的温度漂移特性,而
高频组件则主要表示白噪声与振动噪声。
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图 10　 VMD 分解后的数据

Fig. 10　 Data
 

after
 

VMD
 

decomposition

　 　 在后续对 IMFs 的处理中,通过保留那些准确反映陀

螺仪真实物理行为的特征项,同时滤除信号中混杂的噪

声项,为后续建模提供了高保真特征源。 最终,实现了振

动误差与温度误差的解耦,并实现振动误差的补偿。 这

种去噪过程不仅显著提高了信号的清晰度,还大大增强

了其对外部干扰的适应能力。 去噪前后的对比如图 11
所示。

图 11　 VMD 分解前后数据对比

Fig. 11　 Comparison
 

of
 

data
 

before
 

and
 

after
 

VMD
 

decomposition

　 　 经过 VMD 后的数据与温度数据一起输入 LSTM 模

型中进行误差预测,以陀螺 1 为例。 在 LSTM 模型参数

配置中,通过实验验证确定最优隐藏单元数为 50,能够

平衡模型复杂度与泛化能力。 学习率采用动态衰减策

略,从 0. 001 开始,每 50 个 epoch 衰减 50% ,确保训练过

程既快速收敛又避免震荡。 正则化方面,设置 30% 的

Dropout 率有效抑制过拟合现象。 经过 LSTM 温度补偿

后的信号如图 12 所示,信号对于温度的灵敏度已经大幅

降低。

图 12　 温度补偿后的陀螺 1 的信号

Fig. 12　 Signal
 

of
 

gyro
 

1
 

after
 

temperature
 

compensation

为了证明所提出算法的有效性,以陀螺 1 的信号为

例进行了对比试验。 如图 13 所示,通过将 VMD、LSTM、
VMD-8

 

阶 多 项 式 拟 合 ( 8th-order
 

polynomial
 

fitting,
 

8-Polyfit)及 VMD -反向传播神经网络( back
 

propagation
 

neural
 

network,
 

BP)、VMD-门控循环单元(gated
 

recurrent
 

unit,
 

GRU)、VMD-时序卷积网络( temporal
 

convolutional
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network,
 

TCN)近年先进模型与所提出的 VMD-LSTM 模

型进行对比分析,可观察到 VMD-LSTM 算法对温度漂移

的细节特征具有更高的跟踪精度,其预测曲线与真实值

偏差显著减小。

图 13　 各类预测模型对比

Fig. 13　 Comparison
 

of
 

various
 

types
 

of
 

forecasting
 

models

预测结果使用平均绝对误差( mean
 

absolute
 

error,
 

MAE)、平均绝对百分比误差( mean
 

absolute
 

percentage
 

error,
 

MAPE ) 和均方根误差 ( root
 

mean
 

square
 

error,
 

RMSE)对模型进行评估,评估结果如表 2 所示,表中的数

据清楚地表明,VMD-LSTM 模型在预测精度方面优于其

他模型。 这一结果凸显了所提模型在陀螺仪温度漂移与

随机振动误差补偿方面的优势。

表 2　 模型预测结果对比

Table
 

2　 Comparison
 

of
 

model
 

prediction
 

results

模型 MAE MAPE RMSE

VMD-BP 0. 099
 

024 2. 030
 

911 0. 127
 

440

VMD-LSTM 0. 089
 

615 1. 103
 

348 0. 098
 

882

VMD-GRU 0. 104
 

000 1. 739
 

600 0. 135
 

100

VMD-TCN 0. 114
 

800 1. 149
 

700 0. 147
 

400

VMD-八次多项式拟合 0. 093
 

788 1. 456
 

667 0. 120
 

070

LSTM 0. 093
 

491 1. 383
 

223 0. 119
 

750

　 　 陀螺仪阵列中的 4 个陀螺信号经过振动误差补偿与

温度补偿后,使用改进的 SHAKF 算法进行数据融合得到

最终的信号。 最终信号如图 14 所示,补偿后的 1σ 标准

差降低至 0. 033 9° / s,角速度游走降低至 0. 555 8° / h 。
根据评估结果如表 3 所示,经过信号补偿后陀螺仪

阵列信号的 1σ 标准差相较陀螺 1 降低了 29. 84 倍,相较

陀螺 2 降低了 18. 63 倍,相较陀螺 3 降低了 17. 61 倍,相

图 14　 最终输出的补偿信号

Fig. 14　 Final
 

output
 

compensation
 

signal

较陀螺 4 降低了 33. 49 倍;陀螺仪阵列信号的角度随机

游走相较陀螺 1 降低了 20. 94 倍,相较陀螺 2 降低了

18. 09 倍,相较陀螺 3 降低了 21. 149 倍,相较陀螺 4 降低

了 19. 6 倍。

表 3　 误差补偿结果对比

Table
 

3　 Comparison
 

of
 

error
 

compensation
 

results

陀螺编号 1σ 标准差 / ( °·s-1 ) 角度随机游走 / ( °·h
- 1

2 )

陀螺 1 1. 011
 

6 11. 641
 

0

陀螺 2 0. 631
 

7 10. 055
 

2

陀螺 3 0. 597
 

1 11. 755
 

0

陀螺 4 1. 135
 

4 10. 893
 

9

补偿后 0. 033
 

9 0. 555
 

8

　 　 经过误差补偿模型处理后,陀螺阵列信号仍存在部

分难以消除的误差干扰, 通过快速傅里叶变换 ( fast
 

Fourier
 

transform,
 

FFT)对输出信号进行频谱分析,发现

其能量分布呈现出高度集中的特征,约 80% 的误差能量

分布于 0 ~ 0. 269
 

Hz 的极低频段。 该频段内存在一个显

著的直流分量及一系列离散峰值,这一频谱形态揭示了

补偿后的残留误差主要来源于 MEMS 陀螺仪内部与温

度、应力相关的缓变物理过程。
为评估算法工程应用可行性,对各模块进行了实时

性测试。 在 Inteli3-10100F 平台下,VMD 分解、LSTM 预

测及 SHAKF 融合的单帧处理时间分别为 0. 13
 

ms、
5. 44

 

ms 和 5. 3
 

μs,系统整体处理链耗时 5. 58
 

ms,显著

低于 100
 

Hz 采样率对应的 10
 

ms 周期要求,具备 44. 2%
的性能余量。 该性能指标充分满足车载导航系统的实时

性需求( <10
 

ms),通过轻量化优化或使用更高性能处理

器可适配无人机导航等更严格场景( <5
 

ms),证明了算

法在实际工程应用中的可行性。
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4　 结　 　 论

　 　 本研究首次提出针对随机振动环境下 MEMS 陀螺仪

温度误差的补偿问题,并提出了 VMD-LSTM-SHAKF
 

优

化算法。 首先从理论层面深入剖析了陀螺仪的温度误差

与随机振动误差模型,明确了误差产生根源及影响机制,
为后续算法设计奠定坚实基础。 详细阐述了 VMD、
LSTM 和 SHAKF 的基本原理,展示了各算法的独特优势

与相互协作关系。 在实验验证环节,精心设计振动环境

下的高低温实验,系统性收集与-40℃ ~ 70℃ 变温条件与

频率 25 ~ 50
 

Hz、位移 5 ~ 12
 

μm 的随机振动环境下陀螺

仪输出数据。 经 VMD 分解,成功分离出温度漂移特征信

号与噪声,为后续处理提供清晰数据基础。 LSTM 模型在

温度漂移预测中表现出色,相比其他对比模型,在 MAE、
MAPE 和 RMSE 等评估指标上优势显著。 最后,经改进

的 SHAKF 算法数据融合后,陀螺仪阵列信号的 1σ 标准

差和角度随机游走大幅改善,稳定性相较单个陀螺仪提

升 18 倍以上, 有力证明了算法的有效性和优越性。
VMD-LSTM-SHAKF 算法为提高 MEMS 陀螺仪在复杂环

境下的性能提供了有效解决方案,对推动 MEMS 陀螺仪

在导航、姿态控制等领域的广泛应用具有重要意义。 后

续可通过升级实验台振动激励模块,拓展宽频场景以验

证模型通用性,提高搭载模型后陀螺仪的应用范围。 算

法方面研究可添加多目标优化算法集成自适应陷波技

术,以降低补偿后的残留低频误差,并将模型部署至嵌入

式平台,提升应用效果与价值。
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