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Abstract ; Conventional electromagnetic acoustic transducers ( EMATs) typically empoy either permanent magnets (PMs) or direct
current (DC) including unidirectional pulse currents and unidirectional sinusoidal currents, to provide the required bias magnetic field.
However, PM-based transducers are inherently rigid, which limits their applicability for in-situ inspection of curved structures, while DC
bias fields generally require large current magnitudes and impose stringent experimental conditions. To address these limitations, a
curved dual-AC magnetostrictive transducer is proposed, which generates the bias magnetic field using alternating current. A theoretical
model for ultrasonic excitation based on the dual-AC magnetostrictive mechanism is established. Finite element analysis demonstrates that
the proposed transducer can excite a pure shear horizontal (SH) guided wave mode without modal conversion after interacting with
defects. As the curvature radius increases, the curved transducer exhibits a smaller standard deviation of the excitation magnetic field
and lower signal amplitude fluctuation. Using 95% of the peak magnetic field intensity as the criterion for field uniformity, the uniform
magnetic field region of the curved transducer ranges from 22 to 24.34 mm, compared with 17.32 to 20.29 mm for the planar

electromagnetic acoustic transducer ( EMAT ). Furthermore, orthogonal experimental results indicate that the influence of structural
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parameters on signal amplitude follows the order: number of layers > number of turns > length > wire diameter > height. A dual-AC

magnetostrictive SH guided wave system is subsequently constructed. Experimental results indicate that when the magnetization current is

12.3 A with 40 coil turns, the defect signal amplitude of the curved transducer is enhanced by 18. 64% compared to that of the planar

transducer. Increasing the magnetization current to 30 A yields an amplitude increase of 35.71% , and further increasing the number of

turns in the magnetization coil to 100 results in an amplitude enhancement of 85.59%. Repeated experiments with different curvature

radii show that the signal amplitude of both transducers increased with curvature radius, while the curved transducer exhibited smaller

overall errors and amplitude fluctuations. These results confirm the feasibility of dual-AC magnetostrictive excitation for SH guided waves

and demonstrate the effectiveness of the proposed curved transducer for defect detection on curved surfaces.

Keywords : electromagnetic acoustic transducer; dual alternating current; curved surface detection; magnetostriction; SH guided waves
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Fig. 1  Conventional magnetostrictive SH guided wave excitation
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Fig.2 Dual-AC magnetostrictive SH guided wave excitation
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Table 1 Table of orthogonal experimental design for

the magnetizer
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5 30 15 60 1.0 4 40. 66
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