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Abstract ;: Traditional digital image correlation ( DIC) methods that rely subset-based correlation calculations are prone to decorrelation
and strong parameter sensitivity under rotational motions. To overcome these limitations, this study proposes a Gaussian process
regression-guided self-supervised learning DIC method ( GPR-SSL-DIC) for accurate rotational displacement field measurement. The
method develops a self-supervised learning framework based on the Kolmogorov-Arnold Network ( KAN) network, in which a loss
function is formulated using the grayscale differences between the reconstructed and reference images together with a displacement-field
smoothness constraint, driving adaptive optimization of the displacement field and thereby overcoming the limitations of the conventional
subset-matching paradigm in traditional DIC. To improve convergence under large-angle rotations, rotation-invariant SURF feature points
are detected in the structural target region, and their displacement information is used to construct sparse observation samples.
Furthermore, Gaussian process regression is employed to predict a global displacement field as an initial solution, thereby guiding the
network to converge toward the true solution space. Numerical simulations show that the proposed method achieves average end-point
errors below 0. 001 7 pixels under rigid-body rotation and coupled large-deformation conditions, and below 0. 007 4 pixels with sinusoidal
displacements are superimposed, corresponding to a 93. 5% improvement over traditional DIC. Rotating-blade dispacement experiments
further demonstrate that at a 9° inter-frame rotation, the standard deviation of fixed-point distance measurements decreases by 54. 3%
compared with traditional DIC. At 30°, where traditional DIC fails due to severe decorrelation, the proposed method is still able to obtain

the displacement distribution of the blade. These results confirm that the proposed framework is robust under large-angle rotational
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conditions and offers an effective solution for displacement field measurement in rotating structures.

Keywords : rotating structures; digital image correlation; self-supervised learning; Gaussian process regression; displacement field

0 5

il

TR XURE, I R S5 A 5 R A Sy R AL AR Y A
TR FE MRS AR b it AR 32 KB (0 Ty B ) 4
ZR I 7R )5 e i SR EAE R, 2 3 B M i B iz
APIRAS e I IR 0 e 4 A YR TR 5% T AR g
Sk At Ik, P RIER A5 Y s EE R 2 A
AL RS XS A A Bt e R A =G 2 H.
FE0E y f FERAS W ) P AL o 2 S 4

FeT 3T B AL SE 1 BT AR A 2 ((digital image
correlation, DIC) J7 ik LM H i hg B AR ik 5 & 45 1)
IR AR N T 25 A i sh S e At T — A
MBS, Blhn PR T4 R 3D-DIC S5 A et (5
i A AR , LB AR HL T IR 2 i A TARRAE T B =
#IYSH . Hufady SR DIC J 2K 38 B [ 38 78 A - 15
PPETIVE T B sl me 7, I 38 4o 2 AR AR 3 i B3 1 0
NIz s AISRECTAEBR B AR . Guan 255 il Feng 251
RS RE S DIC B ARME: &, L8 T K B2
U YEB SRR R

1455 DIC J5 7538 i s R 1A A58, I Ll 21
B ARk A e IME S 5 57 4R (B (R R B R
EARIGDIRESELT SR, I ISCE BT R
LR R AR R A B I, 275 AR 1Y 2 (A1) g 2 2O
FEAEASIE R A ELAVCIC S X1 X8, B 5 | A ARG G
MFSFBOTERA, AT DIC B ieis 12 shndad b vk, i
AT REUD BT ATEESEL RN 45 & RA e gk
PERIWIE NG T J7 1%, LA B2 3% S e S 8w ia Ak, 1l
1, Yang 55" 10 390 [l g% 2% 7 BRI R ERL 5 R ) R M
KRS A5 G R R AR S B R R B UL S R A
T, (EZERAHZB TR e A A 16°; Turner £0101 2] F
BRECHE Ak T2 R WIS SIAE (R LA ot [R] el A B
IR 29, 4B AR AL 5 53— 2y R IRDE S AR
PR AR e AN AR IR A A S ) (R e AR 5
SEAENIRIE A2 b TN RASTE DERCHS A AE IRIME ™, e
Ab, FERGT JE pREH U0 S5 5B 250000 T 524 88 52 1) .
=W 5 B BRI SRR, 2 T RS
DIC TEREFE 5T s v S A sh LR

VAR TR L 27 ) BB B AR DG T 12532 3 ok
BRI, SRR XS ER R L5 DIC J5iAE,
FEFBREF 20 DIC J5 kil i ZH0E 5 B alhh 2 W 45
BRI RAE PR IR S 06 3R, B T AR PE A e ),
REMSAE T TSR SRR 00 T SRR BE 25 SR %

it o BRI 2Ky 0 A0 R 2 b TR 250
HEAT B O 2, Iz AL RE ) RIS B2 52 PR T U1 S B a4 41
PG 2R RRRI SR TRER I AS B bR 1 1 B
A TE A ME AR B, Wl kit B IR 7 #E B K = T3 ¢
W, &P IR Cheng LELSLAR B U-Net MBFF 5 1 W
B DIC Jri:( self-supervised learning DIC, SSL-DIC) , il
BERET OO BB SO R E S 2 il o R/ ME 2
A A TR R 5 S PR I MR Z 8] B 22 5%
PRI T X B AR R, Li A5 R BB A3
5 B 24 B 45 ( physics-informed neural networks, PINN),
ST LRI HE PINN-DIC AR KL 0T {5 A A
RN LRI AE i A AR A TR AR AR B T AR
TALEHRERE . SR, AE R A P TERE 00T, Wt a) i Wi 4
DA 2 T2 Z540) ey T ™ o 225 LM, el R LA AT
RARATT 1], e 2 B R B AR R /N 28 58 4l
SARIU BRI 1 SSL-DIC TEBEE 45 I v i S I
e, A BESE R T — B RS R B AR A
( Gaussian process regression, GPR) 5 H Wi 22 > e k%
iR M 7 Pi——GPR-SSL-DIC , 52 317 K £ B Tié i
THCT A mkE B M i, EEEWF 9 TR G 1) Mt
£ F Kolmogorov-Arnold ¥ % ( Kolmogorov-Amold net-
works, KAN) ¥ H B 2= I HESL i — 8k S0
YV RO 5 3R B A R R R, SRS 3 Y 3
A ; 2) & H s A fdt 4R iE (speed up robust features,
SURF) PLPCE5 & GPR A2 Je [ U A4 {ELAE SR, 1) T

WA AR Y M KAN U SOE 50 A 85051 = M 25 L1k,
RFERTHE A B e e TO0 T m e siia s v 5 3) il i &
S RSBS00k 1 T 2 077 12 A i
B S M 0 5 v 4 VR A R SR B R

1 GPR-SSL-DIC i izill£ %

AWFSE 42 1 B9 GPR-SSL-DIC 7 ik EE R AR A 1
FiR
1.1 £RBNERSIT R

1) 3T SURF A9 H3 B FRAF o5 L HL

RIAE B G S T AR A5 = AT A A RS LI K,
AR SR SURF B350 3 2% 1S 5 H AR EHR SE AT HRRAE
SRS UL, 2 AL E e R B BURS SR i R
PR AL R 25 0], 58 8515 2 45 10 Hessian %5 F 1 1
Wi i 7 B TIOR8 (1] P =1 A KA 47 o] 5 e B8 A 2o it
HHFREZ 8 MHABERER L LT RERES 9 MEER



5511 40 %

JB % . GPR HIM{ET 15 A Mo DIC e 4546 0B S ik ik 195

LR YIE T

R A A 7
=l {(x“f,y,“f,u )

1
1
1
1
i
1
RAUCAITERA Y
1
1
1
1
1
1

Iv_yl) _yl

:xln/’y - B T SURFRHIE s AL R

VxS |y s g RS 5 A
|

e T AR AR A
AR
I R A

Y 400
800 820 840 gop s0 200
Xlpixel Y/pixel

_______________________

i L TN 25 :»: Wl
s :_2[(“ —u)) + =)’ :I ! Liotar = Lonsso +L oo

A kE LA

1 GPR-SSL-DIC J5 i i
Fig. 1  Flowchart of the proposed method

(3626 A48, NE 2 B ) 2EAT HLAE, (R B JR A
SNER R AR HFIE AT,

0,<0,<0,
[T 7 7 7 7

[T /o]
..... Rig=1

[ [/ [ 7 7
0> .aaa.
[ @ ]/®]
..... BRAR A
g, .aaa.
[®]/®] [
aal’.
[/ 7 7 7 7
Kl 2 Z [l 26 4 A
Fig.2 The 26 nelghbors points in scale-space

REESE I

TEAM IR LR B BE , DURFAE 45 0 o, 7E2E 42 60
(o AL RIITAE R ) 04 [ JE 48480 A 38 5 Bt ) Haar /)N
LIVAS i e s IR i VR de o M ROD S R SR S Xy
JiHe B AE. , B 200 x 200 1ETTHE DXIRIT- R 532 4x4 4> X
S, o A XK P53 5 1) Haar /N0 S )
F R A XS H Z 0, TE IR 4 4ESe it 1) &, Fe 8RR 1
64 4EJER: AAE Y SURF #5381, &l 3 s,

I Haar/MNEARAR = 1) R0 ] I

|y x

K i

| fﬁJd fii
y “

I F dx

|

I

|

|

mg =3 dx +Zdy

s

dn,ldn(z dx/ Z dy)

00, Imax FRAFEMAT

y
© TP > a s ‘-_ vl &) 7
o S 3 g
[ Vo= V| e ]8]S [ ]S d—
W BEM 2lax] [N NN r
- REE >l ey a iy £ I

K3 SURF ik FH g fE

Fig.3  Construction process of SURF descriptors

VERCBTBER T Lowe £2 H BRI AR5 U 4 M 24 Hﬁfﬁ
YHEDN (IR 0. 4) Y R TRI A Gk . Sl ik — 25 BRI
BEIfaff R UAeT— 35 fi,ﬂ—@(%l/\%ﬂ?ﬁﬁﬁ—ﬁﬁ/zﬂﬁfr%
PP [va] g Bt R B , O A0l X A LT 29 SRR BE P i
R ZARAT IR VI s 0 B e T P A B e e, Ry
SRS U B RS I AR (AR T AT SE AL e

2)H T GPR Y R ) (L Tt

GPR VBN —FhZ By AE S DL s 8y AR P )y 22
P PR R 5, B TR R AR L M EAE e ), 76/ VEE
AW S Th R A A SO B AR X 5 ( region
of interest, ROI) FHHEEUFR BT 1Y SURF 4 AE 55 1E Sy WL AL
A BT GPR AT DU STHEWT , A2 AT & Wy 29 SR 1 7%
Grtatint AR & 4 s, WIRIEAE AT SE S,

KRS WA ) AR L T i s T A 05 | =, 4
T+ T AR AR BE e s T s sE v
i
4% 3 I
: @ SURFHHE 5 [CAC @ &R 1
| - AAK SR (Bmpn
1 X » u) v |
: X N u v, I
. 1
! Lowettfﬁ?ﬁ‘)llllRANSACPﬂ,Iiiﬁ"rﬁii TN E-MT‘ ’ ML |
1
| @ W R AR ) O ENEREARR !
I mf mf A R A
Uy = x {(x ) s |
1
Uy =y
A A AR :
X rej |- i !
: o/ Vi S -Z% G - SURFAFIE £ 1¥) A b 800 820 520 0 520 /2(1()400 :
LX) e R A i ey

4 LT GPR MIMIMEAL T B e

Fig. 4  Flowchart of the GPR-based initial value estimation

T R AT XS PR £ R >R B HE 504 4
W AR ERE m (x) NPT ERE k(x, &)
g, BN .



196 & M R ¥R a6t

fx) ~ GP(m(x) ,k(x,x")) (1) Coxmg BEESAE KANRG S
A2 SRR B AR m () WIS ERE | K ﬂﬁWA ________ . |
WARE N EIE  k(x, ') AL REL, 2 T iy A %S ] . 5
¢&im#¢@mfm§0@? * e | | "ﬁﬁinég[%%;%gggy o

LA SURF FRAE SR EAAR X = o /=1 Wl e N NiHE
A MBI KPEAREI GRS Y=y, |7 =1 Alth, N il %E@%QE; 1
ASFREIRAS TR LA ¥ R Se s st (2) JE"TNINY
B, D, | R R R

Y ~ N(0,K(X,X) +0o°I) (2) . [wijav]vi Banjvalzaies
A, 1, 4 n JELRIE ;o2 IR 72 K (X, X) e I K{ """""

R AR 32 00 I K 385 18] 5 22 09 B3 J7 22 26 [, JC R il 2
[K(X, X) ], = k(x;, x).
XFFRFIALE x AL y T 5 ERWINE Y Ik
NI e d0ir 43 A1, B
K(x",X)"
E(x™ x™) +0'2:| )

LY} ( [K(X,X) +o,
| ~ Mo,
K(x",X)
(3)

K. K(x", X) e R™ fRERBAEA S W EEA 2 [1]
M E P 250, TR [K(x™, X) ] = [k(x", x))
k(x™, %)« k(x", x,) ],

A DU -3 By B 36 0 A A

y X, Y, x" ~ N(y, Var(y™)) (4)

JE B IE 5 77 2557 3R -

y. =K(x" ,X)(K(X,X) +0°1)"'Y

Var(y™) = k(x",x") - K(x" ,X)(K(X,X) +
o’l) 'K(X,x") (5)
K. I BE y, B RIZ A0 B0 5 2=
Var(y™ ) JCB T T 45 5 0 Ao e
1.2 &5 %K SSL-DIC MEF &

1) 24544

ATCR Y SSL-DIC W48 ZRAgan1&l 5 s, M4% &
TR KAN #2 FIEE T U-Net 25 L) EHG B i A i
I Gt i — A 235 g () 4 [ US4 B 3 O 2844, KAN 3 3ot i
AT 2 ST YO eRER, R A L S I N 3 B Ak A 2 (] #)
iR ) 23 (A PR BGE T, X — AP PEAE R R T
{8 HIE pRESCHE IR P B 1 JEARL . D28 A A2 A 5 A
T T S MG AL bR B B WL SE &R L
V2 RIRE R PRANTT 8, J S i 1 AR AR 5 KOS B8 w5 3R
H% v,

KAN B BS R I T Kolmogorov-Arnold FREM,
OERLAE AT E XAE[0, 1]" b2 o0& 2 k4L
F:00,1]" >R, BRI RIR R AT — 0 8 22 R AL i
A BN,

Aﬂ@=ﬂxn%f%%)=ika(2¢wWJ) (6)

P

__________________________________________

Fig.5 KAN-based SSL-DIC framework

A, KA v, (0 TEARR R A b, e
R L p.g.n SPHRTHMAERLES] 5
HUZHT AR

L2 I, KAN 6 15 3 1) — Al e b R e 5
W HEHEN b 55 LIRS 11 J5 W i R
@ HIE, 1.
G B ()
G () e ()

P = (7)

d)f‘m'l( *) d){‘m'z( Y d){‘nr”z( *)

Kb ), RN RSB i N TEEH L+ RS
T RLZ AN Al 2 o] —ZEpR B

S 11 JRER AT A e E SO TR R AL PR
Z R

#”=;¢Mﬁ> (8)
7R S FH R T 2 0 R R 1 1T 2 3 ST B, B
¢u>=;qm—aﬂ+ﬁ (9)

Kk HEIRX G R e, SMET B R4S
$sa RIRIF L AR R BEE R O,

i ) 22 J2 PR B R A GB% | I 28 Fe 25 R

KAN(2) = (@' o -+ o @' o @°)x (10)

AR B & 0 R )5 , R WL =K B B 24
(EAEAR T G v J SR A X6 7 437 B8 1 AR B A, A i 2
PR . BG4S A 5 SCBE TR R — Stk 2k 5 1E ik
LU K K 5 57 BUS BRI T LR 2t
AR AL A B0G PREC S B, S 58 42 1 B 2 )

2) K pR R

A GPR FUM A5 21 (14 4 J5 90 Ui 1 B8 3 o 90 246 42



5511 40 %

JB % . GPR HIM{ET 15 A Mo DIC e 4546 0B S ik ik 197

PG IRSCE A ST T Bl 2R
TEAEVIZRHT, B /5LA GPR 158 2/l ih (i #8 3)

VE R ONbRZ: X I 26 AT 51 W0 R, B BoR HI4 5

1% 2 (mean square error, MSE) 1, R 25 P gk i B =

GRS , MSE #0128 U H
1 &
LMSEzﬁg[(ui_u?)z+(Ui_v?)2] (11)
Kfow, v, WMETESR | MRS R u) o) R
XA B ) GPR WIHAR S .

SIFINGRLE R )G, Ul 20 2Rk 1T B B Tk
ZHBAKAR S B S5 B, R AL — ik 5
T IE W I Sl ) 52 5 0 pR B, DB EERR e T 206 5
— Ak B 4 5 #E W ( zero-mean normalized sum squared
difference, ZNSSD) , HixE L= (12) i~ , ZNSSD X
HRZ M A HAT s B R e, ] 2 THSE B X S B ot BR AL 5l
14385 1 BE F7 2

> (ei)-g,)’

Lo = 2\, ':
(12)

K £ Mg (y) 50322 PGS E it R AR 1 A
EHKBEE S, W g, 700 X IBOKBE A

i ~f
> (f)-f)*

g(i) - g, }2

NARIEN RS 3755 Iﬂﬁﬁ@ﬂ#%’fﬂﬁﬂ”ﬂ%%ﬁik,%l}\%
TGS E B S 1 TE U B

Ls yyyyy lh:
1 U al
NE[ 7 ol a)* e }

(13)
K ol/x 5 ol/y S BINEUSTE x 5 y T IRREE ;0° U/ 9
5 0°V/ay" WARTEIHTE x 5 y BB,
IEYNZRB B ) A5 2K pR N
Lo = Lonssp + Laootn (14)
25T LR B 2SR s, 2% B e e 5] S B B
PRS2 A R 25 B) , B IS 76 58 4 AR i A T iff—
Ak, B 2SI RS B I R (v R DNl
1.3 ZHuBUNERME
XH ST RGBSR 6 iR, Z RS H
2 A7 W 5 ARMILI) A SR 4 0 %o 5238 Bl PR, 2 AR A 4%
W AE 22 A7 ML RS P 18 AR R AR (uy, o) A
(u,, v,) , AW ERBHILNS ShS KA S5, i
= B O R A B X O A = 4 AR bR
(%5 Yus 2) » NITSEBIZE SR 423725 (Rl B A
ARSI R FH ANl 7 T 7 1 37 4 D e 5 I, DA 3R B
S S VC RS B BRI A  DLZEAHBL R
K& RS2, 4y B A A RIS T 8 ik S a2 T
i) GPR-SSL-DIC J5 ¥k, #4723 WAR &R iz 3l iR Bx

6 XUHPLGE A 1Y

Fig. 6 Binocular vision imaging model

ARA [l — 4y B A e A DL R P B RS A ) — 4B R
MR P81 s BB 44— 22 B D TR s X AR E 0 2 Y XL
FUBGASE Y | 72 w3 fifp 5 = A SR A B | e 2 S BB e 1t
F i = HE RS S

ZAABL

AAABL

1 20 i
B 7 SEARDCHEE S G

Fig.7 Stereo matching strategy

2 H{EIEIE

N5 S GPR-SSL-DIC 7 ¥ 78 JiE % v % 37 )
TS L AR TR T — RSB O e A 0B
B

HUCBEREIRFH Zhou %527 41 Hh (1 fo 7 HICHE 26 Wy 125,
SYHE N 256 pixels x 256 pixels, £ 3 000 4~ 1 2%
4 pixels MGG R 20 (4 T BE AL, TS ) B O
TR A LT TR 8 TR Y A MR e USRS

gE 2° 25° 30 60° 330°
P8 ANIRIERE Ffy 2 AL HICRE 14

Fig. 8 Speckle patterns with different rotational angles



198 & L £ ¥ W

a6t

FIXT 00~ 25° MY ESENERE P41, A SO T T 5 AR
T I ORG E A0dE 4l GPR (T A Fl R #% ( rational
quadratic kernel, RQ Kernel) | iZM T8 22 RS i6%k
BRI | BEAE W] I S e % CL A 3 10 42 Jm B 35 5 )
AN LA DIC(Neorr ™ | A% K 1 pixel , T4
2EARSM 1T 21 31 pixels) \PINN-DIC F:T KAN fJCH])
{l5]5 SSL-DIC &% GPR-SSL-DIC, Hi KAN Z#@B 251k
LI R IR 128 5 i 451 TEFRIA B ) SRR Z 1R
BUS R L4, TR T PyTorch 1.9.0 528, HRE AL S
DIC TEEMEGAZ N eI R EURE FER Ak, B A 7 58—
FERIRAFL 180 pixelsx 180 pixels KIS ROT, i) 4% i 5%
FHE 180 1R 22 ( average endpoint error, AEE) AT EEVT
i, AN (15) B,

1
AEE—WZ

o WA RS o, AR,
RIRIJ7 2 B G5 S 9 R

006 _g GPR
—o— Ncorr THE¥4E11
005 | ——Neorr FHEEE21
—v— Ncorr TH¥4231
—»— PINN-DIC
0.04 - —e— SSL-DIC
—<«— GPR-SSL-DIC

(upy =l ) + (o, = o)D" (15)

AEE/pixel

vYvvyvvvvylvyyrvyvrvvrvyls 22°
ol Q—Q——H—Q—M{FH%—&+§—M—<—<*<+4"

)z i Q)
B9 ARIEETE 1°~25°lERE i T AEE 455
Fig. 9 Comparison of AEE results for different methods

with rotation angles from 1° to 25°

(<] 9 Z5 LR e NI ERS X — & 2 i i 5
T ARS8 DIC (I SokG B v BE AR 748 R . R FAE L g
AR IEEETH VT EORS BE | 20 5 38 11 55 e e A5 2L 5
AN B T LA M (H ) 22 e T T SR AL R
R, BRI S, TR 11 pixels B, Neorr 1] 7E
18° LA RHFRR B IS Y T4 1483 & 31 pixels B, JUK
SURERE 2 150, i R A AR DT RE R AL

XA MBSOk T 2 )2 AL PINN-DIC 7£
JER% f A 1k 8° Je B HS BRI S PRI XE T TE WM 51 5 1Y
SSL-DIC FE& KAN 5 ) oR B I A8 7, 7E LA R B 5
WEFEE N E LT PINN-DIC, #% ] 42 I & 5 [ P R =
220, BRI, TG f B F— 2B 38 K 7 R IR B A K
PRSI T 1 SR B AR /DN, S SOl sk W, A SCE 3 5 |
A GPR Ul i) & /i i i B e Se 5651 5, 5 950 bk

TR O T AL MR E X7, W 5Tt TSR
FE R A I R

THRACRXT L& 10 fin, 225 F KAN 3R l5
it 15 GPR MY EL71'S: , GPR-SSL-DIC 75 5238 fi% 5 I
K B (R R EE AP PR A T TS 3 R it P S i 25
PR

7000
B2 Neorr 7421231 [ GPR-SSL-DIC [0 PINN-DIC

6000
5000

4000

3000

T EBH s

2 000

1000

0

5 10 15
T S /(%)

P10 AR

Fig. 10  Comparison of computational costs

HE—22R F GPR-SSL-DIC J7¥E% 30°~330° (KN
30°) (4 JE e P 9T A Sl i, it ROL DY 1Y 4
Ki%2 (maximum error, ME) 5 AEE, Z5 U0k 1 i,
BHE R RN ERE S RN, ME S8 0. 003 0 pixels,
AEE B 3576 0. 001 3 pixels VAN, IES: T A48 7 78
HELEKNERE T 00T B I G i AR RGO Bk 5 4
JEE N,

%1 GPR-SSL-DIC ZERIEEH S THEIRE
Table 1 Measurement errors of GPR-SSL-DIC

under rigid rotation at different angles

ekt e ME/pixel
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/(%) u v

30 0.0029 0.001 5 0.001 3

60 0.002 6 0.002 3 0.001 3

90 0.002 2 0.001 4 0.001 2
120 0.001 6 0.003 0 0.001 3
150 0.002 3 0.002 5 0.001 3
180 0.001 5 0.002 1 0.001 2
210 0.003 0 0.001 5 0.001 3
240 0.002 6 0.002 3 0.001 3
270 0.002 0 0.001 5 0.001 1
300 0.001 6 0.0029 0.001 3
330 0.002 3 0.002 6 0.001 3
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Table 2 Measurement errors of GPR-SSL-DIC under
large deformation at different rotation angles

ekt fr e ME/pixel

AEE/pixel

/(%) u v
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180 0.003 1 0.002 4 0.001 7
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330 0.001 4 0.003 8 0.001 4
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Fig. 12 Displacement and error maps measured using
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DIC with different subset sizes and the
proposed GPR-SSL-DIC method
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Fig. 13 Rotational displacement measurement experiment
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Fig. 20 Z-direction displacement distribution of the
blade at different phases
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