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摘　 要:针对传统数字图像相关(DIC)方法因依赖子集相关性计算,在旋转测试中存在去相关现象和参数敏感性高的问题,提
出了一种融合高斯过程回归( GPR)引导自监督 DIC 的旋转位移场测量方法( GPR-SSL-DIC)。 该方法构建基于 Kolmogorov-
Arnold 网络的自监督学习框架,利用重建图像与参考图像的灰度差异及位移场平滑约束设计自监督损失函数,驱动位移场自适

应优化,从而避免了传统 DIC 方法基于子集匹配范式的局限。 为增强网络对大角度旋转的收敛能力,在结构目标区域检测具有

旋转不变性的 SURF 特征点,并利用其位移信息构建稀疏观测样本;进一步结合 GPR 预测全局位移场作为初始解,以引导网络收

敛至真实解空间。 数值模拟试验表明,在全周刚体旋转及耦合大变形工况下,所提方法的平均端点误差不超过 0. 001
 

7
 

pixels;在
叠加正弦位移的复杂场景中,其平均端点误差不超过 0. 007

 

4
 

pixels,较传统 DIC 方法减少 93. 5% ,验证了该方法对不同旋转工况

的自适应能力与高精度表现。 旋转叶片位移测量试验显示,在帧间旋转角度为 9°时,所提方法对叶片表面固定点距离测量的标准

差较传统 DIC 方法减少 54. 3% ,稳定性更优;在帧间旋转角度达 30°时,传统 DIC 方法因去相关失效,而所提方法仍能稳定获取叶

片位移分布。 研究表明,所提方法具备处理大角度旋转场景的能力,为旋转结构位移场测量提供了有效手段。
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Abstract:Traditional
 

digital
 

image
 

correlation
 

( DIC)
 

methods
 

that
 

rely
 

subset-based
 

correlation
 

calculations
 

are
 

prone
 

to
 

decorrelation
 

and
 

strong
 

parameter
 

sensitivity
 

under
 

rotational
 

motions.
 

To
 

overcome
 

these
 

limitations,
 

this
 

study
 

proposes
 

a
 

Gaussian
 

process
 

regression-guided
 

self-supervised
 

learning
 

DIC
 

method
 

( GPR-SSL-DIC)
 

for
 

accurate
 

rotational
 

displacement
 

field
 

measurement.
 

The
 

method
 

develops
 

a
 

self-supervised
 

learning
 

framework
 

based
 

on
 

the
 

Kolmogorov-Arnold
 

Network
 

( KAN)
 

network,
 

in
 

which
 

a
 

loss
 

function
 

is
 

formulated
 

using
 

the
 

grayscale
 

differences
 

between
 

the
 

reconstructed
 

and
 

reference
 

images
 

together
 

with
 

a
 

displacement-field
 

smoothness
 

constraint,
 

driving
 

adaptive
 

optimization
 

of
 

the
 

displacement
 

field
 

and
 

thereby
 

overcoming
 

the
 

limitations
 

of
 

the
 

conventional
 

subset-matching
 

paradigm
 

in
 

traditional
 

DIC.
 

To
 

improve
 

convergence
 

under
 

large-angle
 

rotations,
 

rotation-invariant
 

SURF
 

feature
 

points
 

are
 

detected
 

in
 

the
 

structural
 

target
 

region,
 

and
 

their
 

displacement
 

information
 

is
 

used
 

to
 

construct
 

sparse
 

observation
 

samples.
 

Furthermore,
 

Gaussian
 

process
 

regression
 

is
 

employed
 

to
 

predict
 

a
 

global
 

displacement
 

field
 

as
 

an
 

initial
 

solution,
 

thereby
 

guiding
 

the
 

network
 

to
 

converge
 

toward
 

the
 

true
 

solution
 

space.
 

Numerical
 

simulations
 

show
 

that
 

the
 

proposed
 

method
 

achieves
 

average
 

end-point
 

errors
 

below
 

0. 001
 

7
 

pixels
 

under
 

rigid-body
 

rotation
 

and
 

coupled
 

large-deformation
 

conditions,
 

and
 

below
 

0. 007
 

4
 

pixels
 

with
 

sinusoidal
 

displacements
 

are
 

superimposed,
 

corresponding
 

to
 

a
 

93. 5%
 

improvement
 

over
 

traditional
 

DIC.
 

Rotating-blade
 

dispacement
 

experiments
 

further
 

demonstrate
 

that
 

at
 

a
 

9°
 

inter-frame
 

rotation,
 

the
 

standard
 

deviation
 

of
 

fixed-point
 

distance
 

measurements
 

decreases
 

by
 

54. 3%
 

compared
 

with
 

traditional
 

DIC.
 

At
 

30°,
 

where
 

traditional
 

DIC
 

fails
 

due
 

to
 

severe
 

decorrelation,
 

the
 

proposed
 

method
 

is
 

still
 

able
 

to
 

obtain
 

the
 

displacement
 

distribution
 

of
 

the
 

blade.
 

These
 

results
 

confirm
 

that
 

the
 

proposed
 

framework
 

is
 

robust
 

under
 

large-angle
 

rotational
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conditions
 

and
 

offers
 

an
 

effective
 

solution
 

for
 

displacement
 

field
 

measurement
 

in
 

rotating
 

structures.
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0　 引　 　 言

　 　 螺旋桨叶、风电叶片等旋转结构作为叶轮机械的核

心部件,在服役过程中需承受气动力、离心力、惯性力等

多种复杂力学载荷的共同作用,易导致结构偏离最佳运

行状态,甚至出现超出安全阈值的变形,影响其工作性能

与疲劳寿命[1] 。 因此,开展旋转结构全场、高精度的动态

位移测量对其结构优化设计、力学性能评估至关重要,且
能够为健康状态监测提供重要支撑。

基于计算机视觉的数字图像相关 ( digital
 

image
 

correlation,
 

DIC)方法凭借其高精度、非接触性与高空间

分辨率等优势为旋转结构的动态响应测试提供了一种有

效手段[2] 。 例如,潘济宇等[3] 采用 3D-DIC 结合旋转信号

触发锁相拍摄,成功获取了螺旋桨叶片工作状态下的三

维形貌。 Huñady 等[4] 利用 DIC 捕获薄壁圆盘在不平衡

惯性力作用下的振动响应,并通过迭代最近点算法剔除

刚体运动以获取工作挠度形状。 Guan 等[5] 和 Feng 等[6]

将大视场标定与 DIC 技术相结合,实现了风电叶片上多

点三维运动轨迹的跟踪。
传统 DIC 方法通过形函数描述子集变形,并以反向组

合高斯-牛顿等迭代算法最小化参考与变形子集间的灰度残

差来求解位移参数[7] 。 然而,该类算法的收敛范围有限[8] ,
当结构发生大角度旋转时,参考子集的空间取向显著改变,
致使在变形图像中难以匹配到对应区域,易引发去相关现象

而导致计算失效。 为提升 DIC 算法对旋转运动的适应性,研
究者在形函数中显式引入旋转参数,同时结合具备旋转鲁棒

性的初值估计方法,以辅助位移与旋转参数的初始化。 例

如,Yang 等[9]通过逆向旋转参考子集抑制旋转诱发的去相

关效应,并结合粒子群优化算法实现整数像素级初始位移估

计,但要求相邻帧间旋转角不超过 16°;Turner 等[10] 利用图

像配准方法估计全局刚体运动初值,但其在帧间旋转角度

达到 29. 4°时已基本失效[11] ;另一类方法利用圆形或环形

模板的旋转不变幅值特征估计初值[12-14] ,但其基本假设建

立在小变形条件之上,面对大变形匹配时存在困难[15] 。 此

外,子集尺寸、形函数阶次等模型参数对测量精度影响显

著,通常依赖经验设定或针对具体场景调优,制约了传统

DIC 在旋转场景下的通用性与自动化程度。
近年来,基于深度学习的数字图像相关方法受到越来

越多的关注。 与依赖显式参数模型的传统 DIC 方法不同,
基于深度学习的 DIC 方法通过参数丰富的隐式神经网络

模型表征图像间的变形关系,具备更强非线性建模能力,
能够在无需手动调整参数的情况下实现高精度、密集位移

场估计[16] 。 然而,此类方法通常依赖大量高质量标注数据

进行监督预训练,其泛化能力和精度受限于训练数据集规

模与多样性[17] 。 特别在实际工程应用中,精确标注的真实

变形场数据难以获取,预训练过程亦需耗费大量计算资

源。 针对上述问题,Cheng 等[18] 借助 U-Net 网络开发自监

督 DIC 方法(self-supervised
 

learning
 

DIC,
 

SSL-DIC),该方

法基于光度一致性假设与位移连续性约束,通过最小化参

考图像生成的预测变形图像与实际变形图像之间的差异,
摆脱了对真实位移标签的依赖。 Li 等[19] 进一步引入物理

信息神经网络(physics-informed
 

neural
 

networks,
 

PINN),
基于多层感知机构建 PINN-DIC 模型,将散斑图像坐标作

为输入,位移场作为输出,有效降低了模型复杂度并提高

了拟合精度。 然而,在大角度旋转工况下,帧间大幅刚体

位移会导致网络初始预测严重偏离真值,使其难以确定有

效优化方向,最终导致优化过程陷入局部极小甚至完全收

敛失败,限制了 SSL-DIC 在旋转结构测量中的实用性。
为此, 本 研 究 提 出 了 一 种 融 合 高 斯 过 程 回 归

(Gaussian
 

process
 

regression,
 

GPR)与自监督学习的旋转

位移场测量方法———GPR-SSL-DIC,实现在大角度旋转

工况下的高精度位移测量。 主要研究工作包括:1)构建

基于 Kolmogorov-Arnold 网 络 ( Kolmogorov-Arnold
 

net-
works,

 

KAN)的自监督学习框架,设计光度一致性与位移

场平滑约束复合驱动的损失函数,实现位移场的自适应

优化;2)提出加速稳健特征 ( speed
 

up
 

robust
 

features,
SURF)匹配结合 GPR 全局回归的初值生成策略,利用稀

疏特征点位移构建高斯过程先验,生成连续平滑的全局

初始位移场,作为 KAN 的收敛先验有效引导网络优化,
显著提升在大角度旋转工况下的收敛稳定性;3)通过系

列数值模拟与真实旋转叶片试验,验证了所提方法在旋

转位移场测量中的高精度表现与鲁棒性。

1　 GPR-SSL-DIC 位移场测量方法

　 　 本研究提出的 GPR-SSL-DIC 方法主要流程如图 1
所示。
1. 1　 全局位移初值估计策略

　 　 1)基于 SURF 的稀疏特征点提取

为在旋转场景下获得高置信度的稀疏位移观测值,
本文采用 SURF 算法[20] 对参考图像与目标图像进行特征

点提取与匹配。 该算法首先利用积分图像与盒式滤波器

快速构建尺度空间,计算各像素点的 Hessian 矩阵响应;
随后在离散尺度空间内非极大值抑制策略,即将候选点

与其同尺度层 8 个相邻像素及上下尺度层各 9 个像素
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图 1　 GPR-SSL-DIC 方法流程

Fig. 1　 Flowchart
 

of
 

the
 

proposed
 

method

(共 26 个邻点,如图 2 所示)进行比较,仅保留局部极值

点作为尺度不变特征点。

图 2　 尺度空间中的 26 个邻点

Fig. 2　 The
 

26
 

neighbors
 

points
 

in
 

scale-space

在描述子生成阶段,以特征点为中心,在半径为 6σ
(σ 为特征点所在尺度)的圆形邻域内通过扇形 Haar 小

波响应统计确定主方向;随后沿主方向对局部图像进行

旋转校正,取 20σ×20σ 正方形区域并划分为 4×4 个子区

域,对每个子区域计算水平与垂直方向 Haar 小波响应的

和及其绝对值之和,形成 4 维统计向量,最终串联构成

64 维旋转不变的 SURF 描述子,如图 3 所示。

图 3　 SURF 描述子构建流程

Fig. 3　 Construction
 

process
 

of
 

SURF
 

descriptors

匹配阶段采用 Lowe 提出的最近邻与次近邻距离比值

准则(阈值取 0. 4) [21] 进行初步筛选。 为进一步去除误匹

配并确保几何一致性,本文引入随机抽样一致算法估计两

视图间的基础矩阵,并依据对极几何约束保留内点集合。
最终获得的稀疏匹配点对具有较高的准确性和鲁棒性,为
后续生成密集位移场初始值提供了可靠的观测先验。

2)基于 GPR 的位移场初值预测

GPR 作为一种经典的非参数贝叶斯模型,凭借协方差

核函数的灵活选择,具备强大的非线性建模能力,在小样

本监督学习任务中表现出色[22] 。 本文从目标区域(region
 

of
 

interest,
 

ROI)中提取稀疏的 SURF 特征点作为观测样

本,基于 GPR 进行贝叶斯推断,生成符合物理约束的位移

场初始估计,流程如图 4 所示。 该初始值作为可靠先验,
为后续自监督学习网络提供了解空间的有效引导,显著提

升了网络在大角度旋转场景下的收敛稳定性。

图 4　 基于 GPR 的初值估计方法流程

Fig. 4　 Flowchart
 

of
 

the
 

GPR-based
 

initial
 

value
 

estimation

高斯过程本质上是对函数 f:
 

RD →R 的概率分布描

述。 该过程由均值函数 m( x) 及协方差函数 k( x,
 

x′)
确定,即:
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f(x) ~ GP(m(x),k(x,x′)) (1)
式中:x,x′表示两个不同观测样本;m(x)为均值函数,通
常假定为零均值;k(x,

 

x′)为核函数,它刻画了输入空间

中任意两样本间的相似性。
本文以 SURF 特征点的像素坐标 X = {x i}

n
i = 1 为输

入,对应的水平或垂向位移 Y = {y i}
n
i = 1 为输出,建立从

坐标到位移的回归模型。 观测值 Y 的先验分布如式(2)
所示。

Y ~ N(0,K(X,X) + σ 2In) (2)
式中: In 为n维单位矩阵;σ2 为观测噪声方差;K(X,

 

X) ∈
Rn×n 代表观测数据间关系的协方差矩阵, 元素满足

[K(X,
 

X)] ij = k(xi,
 

x j)。
对于待预测位置 x∗ ,其位移 y∗ 与已知观测值 Y 服

从联合高斯分布,即:
Y
y∗

é

ë
êê

ù

û
úú ~ N 0,

K(X,X) + σ2In K(x∗,X)T

K(x∗,X) k(x∗,x∗) + σ2

é

ë

ê
ê

ù

û

ú
ú( )
(3)

式中: K(x∗ ,
 

X) ∈ R1×n 代表预测样本与观测样本之间

的互协方差矩阵,元素满足[K(x∗ ,
 

X)] = [k(x∗ ,
 

x1)
 

k(x∗ ,
 

x2)
 

…
 

k(x∗ ,
 

xn)]。
依据贝叶斯定理,y∗的后验分布为:
y∗ X,Y,x∗ ~ N(y∗

m ,Var(y∗ )) (4)
后验均值与方差分别为:
y∗
m = K(x∗ ,X)(K(X,X) + σ 2In)

-1Y
Var(y∗ ) = k(x∗ ,x∗ ) - K(x∗ ,X)(K(X,X) +

σ 2In)
-1K(X,x∗ ) (5)

式中: 后验均值 y∗
m 即为该点的预测位移; 后验方差

Var(y∗ ) 反映了预测结果的不确定性。
1. 2　 初值引导的 SSL-DIC 测量方法

　 　 1)网络结构

本文采用的 SSL-DIC 网络架构如图 5 所示。 网络主

体由 KAN 构成[23] ,相较于 U-Net 等以图像块为输入、通
过编码-解码结构间接回归位移场的架构,KAN 通过边

上的可学习激活函数,能够直接实现从连续坐标空间到

位移向量空间的函数逼近。 这一特性在数学上更接近于

使用形函数描述物理场的思想。 网络的输入层包含两个

节点,用于逐点建立图像坐标到位移的映射关系。 输出

层同样为两个节点,分别输出坐标点的水平位移 u 与垂

直位移 v。
KAN 的理论基础源于 Kolmogorov-Arnold 表示定理。

该定理指出:任何定义在 [ 0, 1] n 上的多元连续函数

f:[0,1] n →Rn,均可表示为若干一元连续函数的嵌套

组合,即:

f(x) = f(x1,x2,…,xn) = ∑
2n+1

q = 1
Φq ∑

n

p = 1
ϕq,p(xp)( ) (6)

图 5　 基于 KAN 的 SSL-DIC 架构

Fig. 5　 KAN-based
 

SSL-DIC
 

framework

式中: ϕq,p 为输入变量 xp 的单元非线性变换函数;Φq 表

示中间结果的组合。 p,q,n分别表示为输入变量索引、函
数层索引与输入向量维度。

与之相应,KAN 将可学习的一维非线性函数直接参

数化于连接边上。 第 l 层至第 l+1 层的映射由函数矩阵

Φl 表征,即:

Φl =

ϕl
1,1(·) ϕl

1,2(·) … ϕl
1,nl

(·)

ϕl
2,1(·) ϕl

2,2(·) … ϕl
2,nl

(·)

︙ ︙ ⋱ ︙
ϕl

nl +1,1(·) ϕl
nl +1,2(·) … ϕl

nl +1,nl
(·)

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

(7)

式中: ϕl
j,i 表示连接第 l 层第 i 个节点与第 l + 1 层第 j 个

节点之间的可学习一维函数。
第 l+1 层第 j 个节点的输出定义为所有传入边函数

之和,即:

x l +1
j = ∑

nl

i = 1
ϕl

j,i(x
l
i) (8)

本文选用基于泰勒展开的可学习激活函数,即:

ϕ(x) = ∑
K

k = 1
ck(x - a) k + β (9)

式中:k 为多项式阶数;系数 ck 与偏差项 β 为可学习参

数;a 为展开中心,为简化计算设置为 0。
通过多层函数矩阵的级联,网络最终输出为:

KAN(x) = (Φl … Φ1 Φ0 )x (10)
前向传播得到全场位移场后,采用双三次 B 样条插

值在变形图像中重采样对应位置的灰度值,生成重建目

标图像。 随后结合后文设计的光度一致性损失与正则化

约束,将重建灰度与参考图像真实灰度进行比较,通过反

向传播优化全部激活函数参数,实现完全自监督的学习

过程。
2)损失函数

为利用 GPR 预测得到的全局初始位移场为网络提
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供合理先验,本文设计了两阶段训练策略。
在正式训练前,首先以 GPR 得到的全局初始位移场

作为伪标签,对网络进行引导预训练。 该阶段采用均方

误差(mean
 

square
 

error,
 

MSE)损失,使网络快速收敛至

合理的解空间。 MSE 损失定义为:

LMSE = 1
N ∑

N

i = 1
[(u i - u0

i )
2 + (vi - v0

i )
2] (11)

式中:u i、vi 为网络在第 i 个像素点输出的位移;u0
i 、v

0
i 为

对应位置的 GPR 初始位移。
引导训练结束后,切换至正式训练进行自监督优化。

该阶段仅依赖图像自身信息,采用光度一致性损失与平

滑正则项驱动的复合损失函数。 光度损失选用零均值归

一化 互 相 关 准 则 ( zero-mean
 

normalized
 

sum
 

squared
 

difference,
 

ZNSSD),其定义如式(12)所示。 ZNSSD 对光

照线性变化具有强鲁棒性,可提升模型对实际光照扰动

的适应能力[24] 。

LZNSSD = ∑
N

i = 1

f(i) - fm

∑(f(i)- fm)2
-

g(i) - gm

∑(g(i)- gm)2

é

ë

ê
êê

ù

û

ú
úú

2

(12)
式中: f( i) 和 g( j) 分别为参考图像与重建图像在对应位

置的灰度值;fm 和 gm 分别为区域灰度均值。
为保证位移场空间连续性并抑制噪声放大,引入基

于图像梯度的二阶平滑正则项[25] ,即:
Lsmooth =

1
N ∑

N

i = 1

∂2U
∂2x

exp - ∂I
∂x( ) + ∂2V

∂2y
exp - ∂I

∂y( )é

ë
êê

ù

û
úú

(13)
式中:􀆟I / x 与 􀆟I / y 分别为图像在 x 与 y 方向的梯度;􀆟2U/ 􀆟x2

与 􀆟2V / 􀆟y2 为变形场在 x 与 y 方向的二阶梯度。
正式训练阶段的总损失函数为:
L total = LZNSSD + Lsmooth (14)
得益于上述两阶段训练策略,网络首先在引导阶段

快速收敛至有效解空间,随后在完全无标注条件下进一

步优化,最终实现高精度的大旋转位移测量。

1. 3　 三维位移测量策略

　 　 双目立体视觉系统成像模型如图 6 所示。 该系统由

左右两台相机同步采集被测对象运动图像,分别获得各

测点在左、右相机图像平面上的像素坐标 ( u l,
 

vl ) 和

(ur,
 

vr),结合标定得到的相机内参、外参及畸变参数,通
过三角测量原理[26] 即可解算出对应点的三维世界坐标

(xw,
 

yw,
 

zw),从而实现运动物体全场空间位置重建。
本文试验采用如图 7 所示的立体匹配策略,以获取

全场测点的匹配信息。 具体流程为:以左相机首帧图像

为全局参考帧,分别对左、右相机图像序列独立运用所提

出的 GPR-SSL-DIC 方法,进行全场亚像素级运动跟踪,

图 6　 双目视觉成像模型

Fig. 6　 Binocular
 

vision
 

imaging
 

model

获得同一物理测点在左右视图中随时间变化的二维像素

坐标序列;随后,将每一时刻的匹配点对代入已标定的双

目成像模型,逐点解算其三维世界坐标,最终实现旋转叶

片的三维位移场测量。

图 7　 立体匹配策略

Fig. 7　 Stereo
 

matching
 

strategy

2　 数值验证

　 　 为定量评估 GPR-SSL-DIC 方法在旋转位移场测量

中的精度,本节设计了一系列具有已知理论真值的数值

模拟试验。
散斑图采用 Zhou 等[27] 提出的高斯散斑生成方法,

分辨率为 256
 

pixels × 256
 

pixels, 包含 3
 

000 个直径

4
  

pixels、中心光强为 20 的高斯斑点。 基于后向映射

法[28] ,生成了如图 8 所示的两组刚体旋转图像序列。

图 8　 不同旋转角度模拟散斑图

Fig. 8　 Speckle
 

patterns
 

with
 

different
 

rotational
 

angles
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针对 0° ~25°的连续旋转序列,本文对比了 5 种代表性

方法的测量精度,包括纯 GPR(基于有理二次核(rational
 

quadratic
 

kernel,
 

RQ
 

Kernel),该核可视为多尺度平方指数

核的加权组合,能够同时捕捉旋转位移场的全局趋势与局

部细节、传统子集类 DIC(Ncorr[29] ,网格步长 1
 

pixel,子集

半径分别取 11、21、31
 

pixels)、PINN-DIC、基于 KAN 的无初

值引导 SSL-DIC 及 GPR-SSL-DIC。 其中,KAN 经超参数优

化后采用单层 128 节点结构,在表达能力与计算效率之间

取得最佳平衡,并基于 PyTorch
 

1. 9. 0 实现。 为避免传统

DIC 在图像边缘因散斑缺失导致的精度退化,所有方法统一

选取中心 180
 

pixels×180
 

pixels 区域作为 ROI。 测量精度采

用平均端点误差(average
 

endpoint
 

error,
 

AEE)进行定量评

价,定义如式(15)所示。

AEE = 1
N ∑

i,j
(u t

i,j - up
i,j)

2 + (vti,j - vpi,j)
2 (15)

式中:u t
i,

 

j、v
t
i,

 

j 为该点理论位移;up
i,

 

j、v
p
i,

 

j 为计算位移。
不同方法的测量结果如图 9 所示。

图 9　 不同方法在 1° ~ 25°旋转角下 AEE 结果

Fig. 9　 Comparison
 

of
 

AEE
 

results
 

for
 

different
 

methods
 

with
 

rotation
 

angles
 

from
 

1°
 

to
 

25°

图 9 结果表明,在刚体旋转这一连续平滑位移场场景

中,传统 DIC 的测量精度高度依赖子集尺寸:大子集虽能

有效抑制噪声并提升匹配精度,却显著削弱旋转容忍度;
小子集虽对旋转更具适应性,但易受噪声干扰导致随机误

差增大。 具体而言,子集半径为 11
 

pixels 时,Ncorr 可在

18°以内保持稳定收敛;当子集半径增至 31
 

pixels 时,其收

敛阈值降至 15°,超过该角度即发生匹配失效。
对于自监督类方法,基于多层感知机的 PINN-DIC 在

旋转角超过 8° 后即出现收敛困难。 而无初值引导的

SSL-DIC 凭借 KAN 更强的函数逼近能力,在拟合精度与

旋转适应性上优于 PINN-DIC,将可靠测量范围扩展至

22°。 然而,当旋转角度进一步增大时,该方法亦陷入大

位移模式学习的局部极小,导致收敛失败。 本文通过引

入 GPR 预测的全局初始位移场作为先验引导,有效消除

了大旋转工况下的优化“初始盲区”,显著提升了收敛稳

定性和大角度测量上限。
计算效率对比如图 10 所示。 得益于 KAN 的强拟合

能力与 GPR 的收敛引导,GPR-SSL-DIC 在实现最高测量

精度的同时,仍保持最优的计算速度,展现出优异的综合

性能。

图 10　 不同方法的计算效率

Fig. 10　 Comparison
 

of
 

computational
 

costs

进一步采用 GPR-SSL-DIC 方法对 30° ~ 330°(步长为

30°)的全周旋转序列进行位移场测量,统计 ROI 内的最

大误差( maximum
 

error,
 

ME)与 AEE,结果如表 1 所示。
数据表明:在整个旋转范围内,ME 不超过 0. 003 0

 

pixels,
AEE 稳定保持在 0. 001 3

 

pixels 以内,证实了所提方法在

连续大旋转工况下具备出色的亚像素级测量精度与全角

度鲁棒性。

表 1　 GPR-SSL-DIC 在刚体旋转场景下测量误差

Table
 

1　 Measurement
 

errors
 

of
 

GPR-SSL-DIC
 

under
 

rigid
 

rotation
 

at
 

different
 

angles

旋转角度

/ ( °)

ME / pixel

u v
AEE / pixel

30 0. 002
 

9 0. 001
 

5 0. 001
 

3

60 0. 002
 

6 0. 002
 

3 0. 001
 

3

90 0. 002
 

2 0. 001
 

4 0. 001
 

2

120 0. 001
 

6 0. 003
 

0 0. 001
 

3

150 0. 002
 

3 0. 002
 

5 0. 001
 

3

180 0. 001
 

5 0. 002
 

1 0. 001
 

2

210 0. 003
 

0 0. 001
 

5 0. 001
 

3

240 0. 002
 

6 0. 002
 

3 0. 001
 

3

270 0. 002
 

0 0. 001
 

5 0. 001
 

1

300 0. 001
 

6 0. 002
 

9 0. 001
 

3

330 0. 002
 

3 0. 002
 

6 0. 001
 

3
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　 　 为进一步模拟旋转结构伴随变形的情况,在原始散

斑图上沿 x、y 方向分别施加 0. 20 与-0. 05 的均匀应变,
随后将变形后图像按 30°步长旋转至 30° ~ 330°,构造大

变形与大旋转耦合的复杂测试序列,如图 11 所示。 在该

极端工况下,GPR-SSL-DIC 的测量误差统计如表 2 所示。
结果显示,即便面临大变形与大旋转的叠加扰动,ME 仍

仅为 0. 003 8
 

pixels,AEE 控制在 0. 001 7
 

pixels 以内,表
明所提方法在大变形旋转复合场景中依然能够保持优异

的测量精度与稳定收敛能力。

图 11　 不同旋转角度下大变形模拟散斑图

Fig. 11　 Speckle
 

pattern
 

under
 

large
 

deformation
 

with
 

different
 

rotational
 

angles

表 2　 GPR-SSL-DIC 在大变形旋转场景下测量误差

Table
 

2　 Measurement
 

errors
 

of
 

GPR-SSL-DIC
 

under
 

large
 

deformation
 

at
 

different
 

rotation
 

angles

旋转角度

/ ( °)

ME / pixel

u v
AEE / pixel

30 0. 003
 

7 0. 002
 

3 0. 001
 

7

60 0. 003
 

8 0. 001
 

3 0. 001
 

4

90 0. 002
 

8 0. 002
 

0 0. 001
 

4

120 0. 002
 

2 0. 003
 

8 0. 001
 

7

150 0. 001
 

3 0. 003
 

8 0. 001
 

4

180 0. 003
 

1 0. 002
 

4 0. 001
 

7

210 0. 003
 

8 0. 002
 

4 0. 001
 

7

240 0. 003
 

8 0. 001
 

4 0. 001
 

4

270 0. 002
 

9 0. 001
 

9 0. 001
 

5

300 0. 002
 

3 0. 003
 

7 0. 001
 

7

330 0. 001
 

4 0. 003
 

8 0. 001
 

4

　 　 为进一步评估 GPR-SSL-DIC 方法的自适应能力,本
文构造了正弦变形与旋转位移叠加的复杂图像,以模拟

旋转测量过程中伴随局部高频变形的情形。 首先沿 x 方

向施加如式(16) 所示的正弦位移场。 将该正弦位移作

为局部变形叠加至参考图像,随后将变形后图像整体旋

转 10°,生成测试图像。 ROI 区域内的位移场测量结果如

图 12 所示,相应的 ME 与 AEE 统计如表 3 所示。

u = 3 × sin
2πx
100

- π
2( ) (16)

图 12　 使用不同子集尺寸 DIC 与 GPR-SSL-DIC 方法

测得的位移及误差

Fig. 12　 Displacement
 

and
 

error
 

maps
 

measured
 

using
 

DIC
 

with
 

different
 

subset
 

sizes
 

and
 

the
 

proposed
 

GPR-SSL-DIC
 

method

表 3　 传统 DIC 与 GPR-SSL-DIC 方法的测量误差

Table
 

3　 Measured
 

errors
 

using
 

traditional
 

DIC
 

and
 

the
 

GPR-SSL-DIC
 

method

测量方法
ME / pixel

u v
AEE / pixel

Ncorr

11×11

21×21

31×31

GPR-SSL-DIC

0. 403
 

1 0. 262
 

8 0. 113
 

1

1. 537
 

2 0. 551
 

2 0. 358
 

0

2. 585
 

0 0. 746
 

7 0. 664
 

6

0. 048
 

3 0. 030
 

3 0. 007
 

4

　 　 从图 12 可见,在位移梯度剧烈变化的正弦场中,传
统 DIC 受子集窗口的内在平滑效应(相当于低通滤波)
制约:大子集虽能抑制噪声,但无法分辨高频正弦分

量,导致显著匹配误差;小子集虽对局部复杂变形更具

敏感性,却易受噪声放大。 相比之下,GPR-SSL-DIC 能

够精准捕捉并重建高频正弦特征,其 AEE 较最佳传统

DIC(子集半径 11
 

pixels)降低了 93. 5% ,充分彰显了该

方法在旋转工况下对复杂局部变形的出色自适应性与

测量精度。

3　 试验验证

　 　 本研究以直径为 17. 8
 

cm 的碳纤尼龙叶片为对象,
开展了真实旋转条件下的位移测量试验,试验场景如



200　　 仪　 器　 仪　 表　 学　 报 第 4 6 卷

图 13(a)所示。 采用两台 Revealer
 

504 相机(分辨率为

1
 

664
 

pixels×1
 

664
 

pixels)搭建立体视觉系统,通过硬件

触发实现同步拍摄。 镜头焦距 17 mm,光圈 F2. 8,工作距

离约为 0. 5
 

m。
叶片表面喷洒白色哑光油漆制备随机散斑, 如

图 13(b)所示。 散斑平均直径为 5. 2
  

pixels,分布密度

44. 1% 。 照明系统采用两台 300
 

W 金贝 EFII-300 直流

LED 光源,置于叶片表面约 1
 

m 处,提供均匀、无闪烁的

恒定照明,叶片表面实测照度 90
 

lux。 相机曝光时间设

为 100
 

μs,所采集散斑图像对比度为 41. 6% ,满足 DIC 分

析的图像质量要求。

图 13　 叶片旋转位移测量试验

Fig. 13　 Rotational
 

displacement
 

measurement
 

experiment
 

of
 

the
 

blade

叶片由 60 伺服电机驱动,相机以 120
 

fps 帧率采集

不同转速下的运动视频。 本试验选取 180 与 600
 

rpm 两

种工况开展叶片位移跟踪试验,其中 180
 

rpm 工况用于

评估在小旋转角度下方法的测试精度与稳定性;600
 

rpm
工况用于检验方法在大角度旋转下的测试能力。

为定量评价高速旋转下的成像清晰度,采用基于边

缘能量的 KBlur 模糊指标[30](取值范围为 0 ~ 1,数值越大

图像越清晰)进行评估。 结果显示:180
 

rpm 工况下,左、
右相机 KBlur 系数分别为 0. 965 和 0. 963;600

 

rpm 工况

下分别为 0. 947 和 0. 945,表明成像系统能够获取清晰的

散斑图像,为后续高精度三维位移测量提供了可靠的图

像基础。
在 180

 

rpm 工况下,采用 Correlated
 

Solutions 公司的

VIC-3D 软件与所提 GPR-SSL-DIC 方法对叶片全场三维

位移进行跟踪对比。 VIC-3D 子集大小设置为 31
 

pixels。

在叶片表面选取 3 个代表性关注点( points
 

of
 

interest,
POI)A、B、C,其位置如图 14(a)所示。 各点在 X、Y、Z 这

3 个方向的位移时域曲线分别如图 15( a) ~ ( c)所示,整
体呈现出刚体旋转运动特征。

对两种方法获得的三维运动轨迹进行圆拟合后得到

的旋转半径如图 16 所示。 与实际物理测量值相比,
GPR-SSL-DIC 方法和 VIC-3D 的平均相对误差分别为

1. 32% 和 1. 42% 。 各时刻 A、C 两点间距离计算结果如

图 17 所示。 其中,VIC-3D 测量结果的标准差为 0. 035
 

mm,
而 GPR-SSL-DIC 方 法 为 0. 016

 

mm, 较 前 者 降 低 了

　 　 　 　

图 14　 POIs 位置示意图

Fig. 14　 Location
 

of
 

the
 

POIs
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图 15　 180
 

rpm 下 POIs 三维运动曲线

Fig. 15　 Three-dimensional
 

motion
 

of
 

the
 

POIs
 

at
 

180
 

rpm

图 16　 旋转半径比较

Fig. 16　 Comparison
 

of
 

rotation
 

radius
 

measurements

图 17　 点间距测量结果对比

Fig. 17　 Comparison
 

of
 

measured
 

point-to-point
 

distances

54. 3% 。 这表明所提方法在保证更高测量精度的同时,
具备更优的测量稳定性。

当转速为 600
 

rpm 时,相邻帧间叶片旋转角度为

30°,VIC-3D 已无法实现有效跟踪。 采用本文方法对叶

片进行全场位移跟踪,选取叶片上 5 个关注点(位置如

图 14(b)所示),其三维空间中运动轨迹如图 18 所示。
轨迹清晰再现了各点之间的相对位置关系及整体空间排

布,准确反映了叶片的旋转运动特性。

图 18　 POIs 运动轨迹

Fig. 18　 Trajectories
 

of
 

the
 

POIs

进一步对各点的空间运动轨迹进行拟合,得到旋转

半径,结果如图 19 所示。 拟合半径的平均相对误差为

1. 46% ,表明所提方法在大角度旋转工况下仍具有较高

的测量精度。 随后提取了叶片在旋转相位为 90°、180°、
270°及 360°时刻下的 Z 向位移分布,如图 20(a) ~ (d)所
示。 结果反映了叶片结构的形态特征及其随旋转角度呈

现的周期性变化规律,验证了 GPR-SSL-DIC 方法在真实

大角度旋转场景下的有效性。

图 19　 旋转半径比较

Fig. 19　 Comparison
 

of
 

rotation
 

radius
 

measurements
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图 20　 不同相位下叶片 Z 向位移分布

Fig. 20　 Z-direction
 

displacement
 

distribution
 

of
 

the
 

blade
 

at
 

different
 

phases

4　 结　 　 论

　 　 本研究提出了一种基于初值引导的自监督数字图像

相关方法,实现了全周旋转条件下的高精度、密集位移场

测量。 主要结论为:
1)通过将 KAN 网络与自监督学习框架相结合,摆脱

了传统 DIC 方法子集匹配与形函数参数的束缚,实现了

位移场的自适应表征;进一步引入基于旋转不变 SURF
特征与 GPR 构建的全局初值引导策略,有效解决了大旋

转引起的优化“初始盲区”问题,使自监督网络在极端旋

转工况下仍能快速、稳定收敛。
2)数值模拟表明,所提方法在刚体旋转、大变形及

正弦变形耦合旋转的场景下,平均端点误差不超过

0. 007 4
 

pixels,在全角度范围内稳定保持亚像素级精

度,测量精度与自适应性优于传统 DIC 方法。
3)旋转叶片位移测量试验进一步验证了方法的有效

性。 在帧间旋转角达 30°的高速工况下,传统 DIC 方法

已失效,而 GPR-SSL-DIC 仍能可靠重建叶片三维位移分

布,将系统的测量上限扩展至更高转速工况。
所提方法为高速旋转结构的动态位移响应监测提供

了新的技术路径。 后续研究将结合位移分解策略,重点

开展旋转工况下形变的提取及精度验证工作,以实现对

高速旋转结构的形变表征与健康状态监测。
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