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摘　 要:尺寸测量是工业产品外观质检的重要环节,传统接触式测量效率低、受主观因素影响大。 而视觉测量需针对不同对象

设计对应的尺寸边界提取方案,高精度三维测量更是开发难度大,适用性不足。 针对以上问题,故提出一种基于零样本分割大

模型(SAM2)融合 RGB-D 坐标转换的非接触式工件主体参数测量方法。 首先,评估阈值分割、边缘分割、颜色空间分割、
 

GrabCut 分割这 4 类传统图像分割算法的掩膜分割效果,选取其中最优者 GrabCut 分割,与主流深度学习分割算法及 SAM2 进行

对比,以证明 SAM2 的优越性;然后,搭建双目立体视觉实验平台,采集工件高精度点云,并对点云进行滤波、平滑、空洞填补等

处理,然后采集目标工件深度图和 RGB 图,利用 SAM2 的零样本泛化分割能力,通过正负点交互引导,在 RGB 图上实现高精度

目标分割,得到初始掩膜;接着采用形态学优化和连通域分析生成拓扑闭合的平滑掩膜,并通过主成分分析( PCA)提取其特征

骨架;最后沿骨架生成垂线段并融合对齐的深度图三维坐标计算几何参数。 通过对比数显游标卡尺和点云的测量结果,对所提

方法测量结果进行分析。 实验结果表明,在套筒、钳具和电机这 3 类工件测量中,套筒直径测量平均绝对误差为 0. 0175
 

mm,钳
具与电机参数测量平均绝对误差分别为 0. 028

 

3 和 0. 023
 

7
 

mm,均满足精度要求。
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Abstract:
 

Dimensional
 

measurement
 

is
 

a
 

critical
 

step
 

in
 

the
 

visual
 

inspection
 

of
 

industrial
 

products.
 

Traditional
 

contact-based
 

measurement
 

methods
 

suffer
 

from
 

low
 

efficiency
 

and
 

significant
 

susceptibility
 

to
 

subjective
 

factors.
 

Meanwhile,
 

vision-based
 

measurement
 

requires
 

tailored
 

dimensional
 

boundary
 

extraction
 

schemes
 

for
 

different
 

objects,
 

and
 

high-precision
 

3D
 

measurement
 

techniques
 

often
 

involve
 

high
 

development
 

complexity
 

and
 

limited
 

applicability.
 

To
 

address
 

these
 

challenges,
 

this
 

study
 

proposes
 

a
 

non-contact
 

method
 

for
 

measuring
 

main
 

workpiece
 

parameters
 

based
 

on
 

the
 

segment
 

anything
 

model
 

2
 

(SAM2)
 

with
 

RGB-D
 

coordinate
 

transformation.
 

First,
 

the
 

mask
 

segmentation
 

performance
 

of
 

four
 

traditional
 

image
 

segmentation
 

algorithms—threshold
 

segmentation,
 

edge
 

segmentation,
 

color
 

space
 

segmentation,
 

and
 

GrabCut
 

segmentation—is
 

evaluated.
 

Among
 

them,
 

GrabCut
 

segmentation,
 

identified
 

as
 

the
 

optimal
 

traditional
 

method,
 

is
 

compared
 

with
 

mainstream
 

deep
 

learning
 

segmentation
 

algorithms
 

and
 

SAM2
 

to
 

demonstrate
 

the
 

superiority
 

of
 

SAM2.
 

Subsequently,
 

a
 

binocular
 

stereo
 

vision
 

experimental
 

platform
 

is
 

constructed
 

to
 

capture
 

high-precision
 

point
 

clouds
 

of
 

workpieces.
 

The
 

point
 

clouds
 

undergo
 

processing
 

steps
 

such
 

as
 

filtering,
 

smoothing,
 

and
 

hole
 

filling.
 

Depth
 

maps
 

and
 

RGB
 

images
 

of
 

the
 

target
 

workpieces
 

are
 

then
 

acquired.
 

Leveraging
 

SAM2′s
 

zero-shot
 

generalization
 

capability,
 

high-precision
 

target
 

segmentation
 

is
 

achieved
 

on
 

RGB
 

images
 

through
 

positive
 

and
 

negative
 

point
 

interaction
 

guidance,
 

yielding
 

initial
 

masks.
 

These
 

masks
 

are
 

further
 

refined
 

via
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morphological
 

optimization
 

and
 

connected
 

component
 

analysis
 

to
 

generate
 

topologically
 

closed
 

smooth
 

masks.
 

A
 

feature
 

skeleton
 

is
 

extracted
 

using
 

principal
 

component
 

analysis
 

(PCA).
 

Finally,
 

perpendicular
 

segments
 

are
 

generated
 

along
 

the
 

skeleton,
 

and
 

geometric
 

parameters
 

are
 

calculated
 

by
 

integrating
 

3D
 

coordinates
 

from
 

the
 

aligned
 

depth
 

maps.
 

The
 

measurement
 

results
 

of
 

the
 

proposed
 

method
 

are
 

analyzed
 

by
 

comparing
 

them
 

with
 

those
 

obtained
 

using
 

digital
 

calipers
 

and
 

point
 

cloud
 

data.
 

Experimental
 

results
 

demonstrate
 

that,
 

in
 

measurements
 

of
 

sleeves,
 

pliers,
 

and
 

motors,
 

the
 

mean
 

absolute
 

error
 

for
 

sleeve
 

diameter
 

is
 

0. 0175
 

mm,
 

while
 

the
 

mean
 

absolute
 

errors
 

for
 

plier
 

and
 

motor
 

parameters
 

are
 

0. 028
 

3
 

and
 

0. 023
 

7
 

mm,
 

respectively,
 

all
 

meeting
 

the
 

required
 

precision
 

standards.
 

Keywords:workpiece
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measurement;
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measurement

0　 引　 　 言

　 　 在制造业向智能化与精密化升级的背景下,工件精

度不仅决定其基础质量,还影响着产线效能与机器生命

周期。 传统接触式测量以人工操作高精度仪器测量为

主,虽在规则工件测量中可达合格精度,但在实际应用中

仍存在诸多局限。 对于复杂曲面、微小特征等异形构件,
传统量工具因物理接触限制难以实现有效测量,非刚性

工件还会因接触应力引发形变误差。 此外,在如今规模

化生产场景下,人工测量不仅面临效率瓶颈与人力成本

上升的问题,其结果易受操作经验差异影响,导致测量结

果波动,进而影响产品质量一致性,难以满足精密制造对

高稳定性和严格公差控制的要求。 相比之下,基于机器

视觉的测量技术借助数字图像处理、三维重建以及深度

学习等前沿手段,突破了传统接触式测量在物理接触和

人工依赖等方面的固有限制,具备非接触式测量、亚毫米

级精度、全自动化测量及环境适应性强等优势,已经在工

业测量领域中得到广泛应用[1-3] 。 视觉尺寸测量利用计

算机视觉技术通过处理图像数据,并结合相机标定[4-6] 计

算出目标物体的物理尺寸。 图像数据的获取通常分为

2D 成像和 3D 成像两大类。 2D 成像技术[7] 通常使用单

一相机获取物体的二维图像,利用图像处理技术,如边缘

提取[8-11] 、亚像素定位[12] 、几何拟合[13-15] 等,从图像中提

取物体的边界信息并计算物理尺寸。 Wang 等[16] 使用基

于单幅图像的远心相机高精度标定方法提高图像精度,
采用改进的 Zernike 矩亚像素边缘检测方法提高亚像素

边缘的检测精度, 测量结果的最大平均绝对误差为

0. 84
 

μm。 Xiang 等[17] 提出了一种基于双摄像头机器视

觉系统和相对测量原理的测量方法,对大型汽车刹车片

卡口尺寸进行高精度测量,平均绝对误差为 0. 003
 

mm。
虽然 2D 视觉测量发展至今已经可以可以达到亚微米级

的测量精度,但 2D 成像在面对复杂物体形状或环境干扰

时,容易产生边界模糊、噪声过多等问题,导致测量精度

低,尤其在多目标、遮挡和光照变化等复杂场景中,测量

性能受限。 与之相比,3D 成像技术[18] 通过多视角拍摄

或使用激光扫描、结构光扫描等 3D 成像技术获取物体的

三维信息,能够提供更加全面的物体几何形态。 3D 图像

的处理过程包括点云配准[19-22] 、点云滤波[23] 、点云分

割[24] 以及点云边界提取[25-27] 等环节,点云配准将多个视

角的数据对齐以形成完整的三维模型,点云滤波和分割

是为了得到更标准的目标点云,而边界提取则是识别出

标准点云与背景之间的界限,为尺寸的测量提空基准。
例如,Zhou 等[28] 提出了一种基于 3D 点云的缝隙和平面

精确测量方法,通过角度准则法提取边界特征点,设计了

3 种测量模型,测量的最大平面误差为 0. 03
 

mm,最大缝

隙误差为 0. 04
 

mm。 但该方法对于声敏感,处理复杂或

微小边界时效果较差,需要根据具体情况调整角度阈值,
通用性较弱。 Wang 等[29] 利用 Kinect

 

v2. 0 在生长植物下

进行 三 维 重 建, 并 采 用 局 部 凸 连 接 ( locally
 

convex
 

connected
 

patches,LCCP)分割算法提取特征边界点,进而

计算叶片几何参数。 但 LCCP 算法依赖明显的凹凸特

征,难以处理平滑表面点云。 综上所述,在点云密度不

均、遮挡严重或环境光线不佳的情况下,3D 图像边界提

取的精度和鲁棒性仍面临诸多挑战。
无论是 2D 测量还是 3D 测量,目标边界的准确定位

始终是视觉尺寸测量中的瓶颈,目前主流的边界提取算

法通常需要根据目标形状、环境特征等因素进行针对性

设计,缺乏通用性,导致在实际应用中面临开发周期长、
适应性差等问题。 为解决以上问题,故提出一种基于零

样本分割大模型( segment
 

anything
 

model
 

2,SAM2) 和二

进制掩膜的目标自动分割方法,实现目标的高精度自动

分割,并通过骨架提取技术精确定位目标的边界,实现目

标主体外形尺寸的自动测量。

1　 数据处理

1. 1　 点云配准

　 　 结构光三维扫描仪采集得到的点云数据通常由多个

来自不同视角的点云片段组成,需通过点云配准以获得

完整的三维模型。 利用最近迭代点算法[30]
 

( iterative
 

closest
 

point,
 

ICP)对点云片段进行配准,通过多次迭代

计算旋转矩阵 R 和平移矩阵 t,对源点云进行刚体变换,
并计算每次变换后误差目标函数 E 的值,直到函数值小

于设置的误差阈值或达到设置的最大迭代次数时停止迭

代。 ICP 配准原理如图 1 所示,其中 S( source) 为源点
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云,T(target)为目标点云, q i 为源点云上一点,p i 为目标

点云中 q i 的最邻近点。

图 1　 ICP 配准

Fig. 1　 ICP
 

registration

R 和 t 如式(1)所示,目标函数如式(2)所示。

R =
cos γ sin γ 0
- sin γ cos γ 0
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(1)

　 　 E(R,t) = 1
n ∑

n

i = 1
q i - (Rp i + t) 2 (2)

其中, q i 为源点云,p i 为目标点云。

1. 2　 点云滤波

　 　 通过高精度结构光三维扫描仪获取的原始点云数据

中,除包含待测工件外,往往还混杂有载物平台、环境背

景噪声以及光学散射等干扰信息,形成与测量无关的冗

余点云。 因此,为实现基于点云深度图的工件几何尺寸

测量[31] ,首先需要确定工件点云在整个点云中的空间位

置,并对原始点云进行调平以及滤波处理[32] ,以有效去

除背景噪声和无关结构。 经过预处理后的点云数据可在

后续深度图转换中生成更高质量、低噪声的工件深度图,
从而提升测量精度和鲁棒性,同时也为点云的精准测量

奠定良好基础。 为此,设计一个系统的点云滤波流程,以
有效提升点云数据质量。 图 2 为点云滤波过程,首先利

用直通滤波器进行粗滤波,将点云与背景冗余噪声分离

得到目标主体,再利用统计滤波算法[33] ,计算点云中每

个点到其邻域内 k 个最近邻点的平均距离,并统计所有

点平均距离的分布,设定距离阈值,将平均距离超过阈值

的点(图 2 中下侧框)视为离群点滤除。

图 2　 点云滤波

Fig. 2　 Point
 

cloud
 

filtering

　 　 由于工件表面比较光滑,数据采集时易受反光影

响,出现数据缺失和数据畸变(图 2 中上侧框) ,因此,
还需对点云进行缺失填补和畸变修复。 首先采用体素

滤波算法对表面点云进行均匀下采样:将点云进行体

素划分,然后计算非空体素的质心代替该体素内的所

有点,再利用插值方法[34] 重建表面缺失部分,得到密度

更高,表面更均匀的点云模型。 体素质心的计算如

式(3)所示, V 为一个非空体素,其中包含 m 个点,该体

素的质心 Pcentroid 为:

　 　

Xcentroid =
∑

m

i = 1
X i

m

Ycentroid =
∑

m

i = 1
Y i

m

Zcentroid =
∑

m

i = 1
Z i

m

ì

î

í

ï
ï
ï
ï
ïï

ï
ï
ï
ï
ï

(3)
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1. 3　 点云参数测量

　 　 经过上述一系列预处理操作,已获得精度较高、
噪声较少的干净点云。 图 3 展示了点云处理与尺寸

测量的整体工作流程。 以套筒为例,为获取其在不同

高度位置的直径信息,将套筒点云沿轴向分割为 8 个

等间距截面,并对每一截面点云构建外接最大长方体

包围盒,以提取其几何参数。 由于套筒本体为圆柱结

构,截面点云近似呈圆形,包围盒的长与宽可分别近

似表示该截面的直径,因此取其均值作为直径的点云

测量值。

图 3　 套筒点云处理和测量

Fig. 3　 Sleeve
 

point
 

cloud
 

processing
 

and
 

measurement

图 4　 基于 SAM2 的 RGB-D 图测量方案

Fig. 4　 SAM2-based
 

RGB-D
 

image
 

measurement
 

solution

1. 4　 深度图映射

　 　 为了获得空间对齐的 RGB(red
 

green
 

blue)图和深度

图(RGB-depth,RGB-D),通过正交投影将 3D 点云映射

到 2D 平面。 选择投影视角为-Z 方向,将点云通过矩

阵 R 中心化,并乘以缩放因子 s, 把点云的空间范围映射

到图像 1
 

280
 

pixels × 960
 

pixels 的像素范围,如式 ( 4)
所示。

x
y
1

é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

s 0 0 W / 2 - sXc

0 s 0 H / 2 - sYc

0 0 1 0

é

ë

ê
ê
êê

ù

û

ú
ú
úú

X
Y
Z
1

é

ë

ê
ê
ê
êê

ù

û

ú
ú
ú
úú

(4)

式中: Xc、Yc 为点云平移量;s 为缩放因子;W 和 H 分别为

图片宽和高,加上W / 2 和H / 2 偏移量,将点云的中心对齐

到图像的中心位置。

将 XYZ 三维点云数据投影到 XY 平面后,生成单通

道灰度图,其中灰度值对应于每个点的深度信息。 为了

增强深度图的可视化效果,再采用彩虹光谱映射方案将

灰度图转为伪彩色深度图,并确保深度图与原始三维数

据的空间对齐。 在点云向图像投影的过程中,当多个 3D
点映射到同一像素时,算法保留 Z 值最小(即最接近相

机)的点,并将无效区域填充为零值。

2　 算法模型构建

　 　 在完成点云优化及 RGB-D 图像的获取与空间对齐

后,为实现对工件主体几何参数的精确测量,提出一种

SAM2 融合 RGB-D 坐标转换的测量方案。 如图 4 所示,
首先,输入 RGB-D 图,在 RGB 图中选取正负提示点,用
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SAM2 模型分割出目标,生成初始掩膜,并采用形态学处

理对掩膜进行平滑与规范化。 然后利用主成分分析

(principal
 

component
 

analysis,PCA) 算法提取掩膜骨架,
并沿着骨架生成一系列垂直于局部斜率的垂线段,最后

利用深度图获取骨架端点和垂线段端点的 3D 坐标,根据

获取的 3D 坐标计算出工件的相关参数。
2. 1　 SAM2 图像目标分割

　 　 SAM2[35] 的单帧图像掩膜分割整体流程与 SAM[36]

相同, 如图 5 所示, 由 3 个部分组成: image-encoder、

promt-encoder 以及 mask-decoder。 输入图片经过 image-
encoder 得到 image-embedding, 输入 promp 经过 promt-
encode 得到 prompt-embedding,两个 embedding 同时输入

到 mask-decoder 得到分割 mask。 SAM2 相较于 SAM 提升

了架构效率,采用 Hiera 架构替代了 SAM 中的 ViT 架构,
引入跨层级跳跃连接提高了细节分割能力,优化了内存

设计,保持了分割精度和零样本泛化能力的同时,SAM2
的分割效率是 SAM 的 6 倍,在工件深度图分割场景下能

快速精准地分割出目标主体。

图 5　 SAM2 掩膜分割

Fig. 5　 SAM2
 

mask
 

segmentation

　 　 输入对已经对齐的 RGB 图 Irgb 和深度图 Idepth, 深度

图用于 2D 坐标到 3D 坐标的转换,RGB 图用于测量对象

的掩 膜 分 割。 通 过 正 点 ( positive
 

point, P ) 和 负 点

(negative
 

point,N)引导模型分割,P 点引导模型识别掩

膜时
 

“必须包含”的区域,N 点指定掩码“必须排除”的区

域以消除歧义,通过正负点结合,分割出 Irgb 中的高质量

工件掩膜,再将分割出的掩膜直接作用于 Idepth, 由于输入

已对齐,深度图中提取的区域便是待测量的区域。

图 6　 掩膜处理

Fig. 6　 Mask
 

processing

2. 2　 二进制掩膜生成

　 　 当
 

RGB
 

图像的目标边界不够清晰时,SAM2
 

模型生

成的二进制掩膜往往存在噪点、不规则边缘等问题[37] ,
这些缺陷将直接影响后续骨架提取的准确性与稳定性。
如图 6 所示,掩膜存在锯齿边缘或缺口、目标区域不连

通、内部存在孔洞或包含了非目标区域的微小连通域,这
些问题会导致构建骨架时产生错误骨架影响测量结果。

因此,需要对初始掩膜进行细化,并保留掩膜的原始形

状,提升骨架构建的准确性。
为填补掩膜中的细小空洞[38] ,设立一个最小阈值

Smin,滤除掩膜中连通区域面积小于 Smin 的部分。 随后进

行连通组件分析,对滤波后的掩膜进行区域划分,基于最

大连通域准则[39] 提取主要目标对象,剔除离散干扰对

象。 在提取主要目标对象后,依次执行形态学开运算与

闭运算以优化掩膜结构[40] 。 在腐蚀操作中,卷积核 Kn×n

在二值图像上滑动,只有当核覆盖的所有像素都为 1 时,
中心像素才会被保留为 1,否则,它会被设置为 0。 膨胀

操作与之相反,如果核覆盖的像素中至少有一个为 1,中
心像素就会被设置为 1。 开运算通过先腐蚀后膨胀的操

作序列去除目标边缘的毛刺状突起及细小凸起,实现边

界平滑化;闭运算则通过先膨胀后腐蚀的操作填充目标

内部孔洞及狭窄断裂,增强掩膜的整体连通性。 最后,采
用轮廓检测[41] 算法提取剩余最大连通域的外围边界,利
用 Ramer-Douglas-Peucker 多边形近似算法[42] 对轮廓进

行自适应简化,其中简化系数根据轮廓周长比例动态调

整,最终将近似多边形重投影至二值空间,生成拓扑闭

合、边缘平滑的掩膜。
2. 3　 骨架提取

　 　 为实现对目标几何参数的精准测量,首先需提取其

中心轴线作为测量的空间基准。 骨架提取技术[43] 能够

有效捕获目标对象的基本拓扑结构,将其二维形态简化

为单像素宽的中心线,并以有序的骨架像素坐标数组形

式表示,从而为后续的三维坐标转换提供空间基准。 采
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用 PCA 算法[44] 进行骨架提取,该方法通过统计样本点的

协方差结构,自动识别并提取数据的主轴方向,实现在降

维的同时最大程度保留目标的主要几何特征。
在采用

 

PCA
 

算法提取工件骨架的过程中,先利用

PCA 算法计算方差,输出两个主轴:第 1 主轴 PC1 为最大

方差方向,对应物体的主要延伸方向;第 2 主轴 PC2 为次

大方差方向且与第 1 主轴正交,对应物体的次要延伸方

向。 通过对两个主轴的反射对称性评分选出最优对称

轴,如图 7 所示,具体步骤为:对于候选轴 PC,掩膜被其

分割成 ma 和 mb 两部分,将掩膜 ma 翻转到另一侧代替

mb,与原始掩膜ma 构成新的掩膜M1
a,然后用原始掩膜Mp

与 M1
a 做差;再对 mb 做同样操作。

图 7　 PCA 骨架提取

Fig. 7　 PCA
 

skeleton
 

extraction

　 　 误差 S 计算方式如式(5)所示。

S = ∑ Mp - Maa + ∑ Mp - Mbb (5)

误差 S 越低,表示反射区域与原始对象重叠度越高,
该主轴对称性越强,因此,选取具有最小误差的主轴作为

目标的对称轴,即最终骨架方向。 确定主轴后,按照主轴

方向进行骨架构建,从目标质心开始沿主轴正负两个方

向传播延伸,同时在掩膜边界内进行骨架增强,最后再进

行像素数组重新排序,最终得到连贯骨架。

2. 4　 垂线段生成和深度识别

　 　 提取出的目标骨架为利用深度图进行三维测量提供

了空间基准,为测量工件宽度或直径,需要在此基础上生

成垂直于骨架的垂线段[45] ,令其方向始终与轴线在该点的

切线方向严格垂直,确保线段沿物体最宽处延伸,从而最

大限度覆盖工件横截面。 通过将骨架点与垂线端点的图

像像素坐标映射到对齐的深度图中,提取对应的深度值,
计算三维坐标,据此便可以精确计算工件的几何参数。

设 骨 架 像 素 为 有 序 集 合 S = ( si si = (y i,x i),
i ∈ [1,n]),其中,s1 为最底部骨架像素,sn 为最顶部骨

架像素。 定义一个窗口半径为 r,对于当前点
 

si(x i,y i),
其局部斜率通过滑动窗口内相邻点的几何关系计算,其
计算步骤为:根据窗口半径计算前向与后向参考点坐标,
然后计算局部斜率,利用反正切函数计算方向角 θi, 如

式(6)所示。

θi = tan -1 y i +r - y i -r

x i +r - x i -r
(6)

给定步长 t,以 i = i + t遍历骨架像素。 在计算端点附

近的骨架像素时可能出现窗口越界的情况,因此还需在

计算时给定截断避免越界计算。
在计算得到像素 si 的方向角 θi 后,计算垂直于 θi 的

方向向量α
➝

,沿着α
➝

通过正反双向迭代延伸生成垂直线

段,生成方法如图 8 所示。

图 8　 垂线段生成

Fig. 8　 Generation
 

of
 

perpendicular
 

line
 

segments

在延伸过程中,检测坐标是否超出图像边界或脱

离物体掩膜区域,同时采集路径上的深度数据,并依据

初始深度值进行阈值过滤以排除异常点。 完成垂线段

生成后,将端点回退至最后一个有效位置,记录两端坐

标并计算左右两侧深度值的中位数。 最后输出线段坐

标和深度中值,这些数据可以反映物体在垂直于中心
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线方向上的空间分布特征,为后续的测量分析提供基

础数据支撑。
2. 5　 参数测量

　 　 假如总共生成了 n条垂线段,在第 k条线段 lk 处计算

直径(宽度)Dk,Dk 可以直接用线段两端端点的欧几里得

距离来表示,线段两端端点为 k1 和 k2,三维坐标用 Xk1,
Xk2 表示,则 Dk 计算如式(7) 所示。

Dk = Xk1 - Xk2 (7)
最终 直 径 取 所 有 局 部 直 径 的 平 均 值, 即 D =

∑
n

i = 1
D i( ) n。 工件的主轴长度 L 用线段 lk 的三维中点之

间的欧几里得距离的和来计算,lk 的中点坐标为 Xmid
k ,则

L 的计算如式(8) 所示,其中 n 为直径数,即:

L = ∑
n-1

k = 1
lk = ∑

n-1

k = 1
Xmid

k+1 - Xmid
k (8)

3　 实验及分析
 

3. 1　 测量系统搭建及数据采集

　 　 为验证算法在工件几何参数测量中的有效性,设计并

搭建一个工件几何参数测量系统。 系统主要由结构光三

维扫描仪和主控计算机组成,结构光三维扫描仪如图 9 所

示,由一台分辨率为 720×1
 

280、帧率为 30 的数字光处理

(digital
 

light
 

processing,
 

DLP)投影仪和分辨率为 2
 

048×
3

 

072 的 CCD 相机(型号 MV-CE060-10UM)组成,采用相移

格雷码法对工件进行三维重建。 主控计算机搭载 NVIDIA
 

GeForce
 

RTX
 

4070
 

Laptop
 

GPU,用于相机标定、点云配准、深
度图转换以及工件测量任务,使用软件 FlexScan3D 控制扫

描设备,设备通过数据线将重建数据输入主控计算机,点
云保存为 PLY 文件。 主控计算机使用 Halcon-24. 11 以及

Open3D 库对输入的点云进行 GPU 加速处理,生成对齐

的深度图和 RGB 图,为后续测量算法提供数据支持。

图 9　 结构光点云扫描系统

Fig. 9　 Structured
 

light
 

point
 

cloud
 

scanning
 

system

实验选取 3 个不同大小、型号和参数的工件,分别为

套筒、 钳具和电机作为测量对象。 使用 FlexScan3D-
3. 3. 24 控制扫描仪,采用 5

 

mm 标定板进行相机标定,标

定 z 近为 724. 0
 

mm,z 远为 1 023. 0
 

mm,标定覆盖范围

70. 2% ,二次投影误差 66. 103
 

μm,错误误差±46. 1
 

μm。
3 个工件的几何参数示意图如图 10 所示。

图 10　 点云和实物对比

Fig. 10　 Comparison
 

between
 

point
 

cloud
 

and
 

physical
 

objects

为获取高精度、高质量的工件三维点云数据,采用

结构光三维扫描仪采用相移格雷码法采集点云。 实验

过程中,将工件正立置于电动转盘中心,设置转台每次

采集后旋转角度为 60°,并调整 CDD 相机的焦距和曝

光以确保成像质量。 首先记录角度 1 下的工件的初始

3D 点云,然后顺时针转动转盘 60°,获取角度 2 对应的

点云,以此类推,直至完成 360°采集,获得 6 个视角面

的点云片段。 再利用 ICP 点云配准算法得到完整原始

点云,通过主控计算机对原始点云进行滤波处理及平

面映射,得到配准的深度图。 采集的点云和深度图如

图 11 所示。

图 11　 点云和 RGB-D 图

Fig. 11　 Point
 

cloud
 

and
 

RGB-D
 

map
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3. 2　 掩膜分割

　 　 为验证 SAM2 算法相较于其他算法通用分割能力

的优势,设计对比实验以评估其在不同噪声干扰条件

下的鲁棒性与准确性。 由于处理后的 RGB 图中工件边

界清晰,背景简单,工件与背景分离度较高,作为分割

算法实验对象缺乏算法性能区分性,因此,对 RGB 图进

行多层次噪声处理,模拟点云采集中遇到噪声干扰的

实际场景,再利用传统图像分割方法和其他基于深度

学习的图像分割方法算法进行图像分割,并分别计算

其交并比 ( intersection
 

over
 

union, IOU) 和 F1-Score 指

标,综合评估各算法在不同干扰强度下的分割性能

表现。
在对处理后的深度图进行分割性能验证前,先对原

始电机深度图应用多种传统图像分割方法进行对比实

验。 选取阈值分割、边缘检测分割、颜色空间分割以及

GrabCut 算法这 4 种典型方法,评估其在本应用场景下的

适用性,并据此筛选表现最优的算法作为后续对比实验

的传统方法基准。 分割效果如图 12 所示。

图 12　 传统方法分割图像

Fig. 12　 Traditional
 

methods
 

for
 

image
 

segmentation
 

　 　 实验结果表明,阈值分割在目标区域与背景灰度值相

近时难以准确区分,仅能提取物体边缘区域,无法有效识

别完整目标;Canny 边缘检测分割时,工件内部并非单一颜

色,产生的平滑梯度变化无法形成明确的边缘跳变,且内

部细碎噪点会干扰轮廓闭合导致分割效果不理想;颜色空

间分割的阈值范围需要随分割对象颜色调整。 相比之下,
GrabCut[46]算法能够同时利用颜色和空间信息进行分割,
而不像传统阈值法仅依赖灰度值或仅依赖颜色信息,即使

在物体边缘或者光照不均匀的区域也能获得更准确的分

割结果。 此外,GrabCut 将图像分割问题转化为能量最小

化问题,能够在保持物体完整性的同时平滑边缘,通过迭

代优化进一步提高分割质量。 综上,后续实验中传统分割

方法将采用基于 GrabCut 算法的方案进行比较分析。
为了增强深度图分割算法的验证能力,设计能有效

降低工件与背景区分度的噪声模型:点云生成基础深度

图后,对深度图添加 4 种复合噪声,利用 Perlin 噪声[47] 和

高斯噪声模拟纹理背景和传感器误差,添加径向渐变噪

声模拟光照变化,添加随机小物体模拟遮挡,并通过噪声

强度参数调控整体干扰程度,最后对工件进行边缘模糊融

合处理,使工件与噪声背景自然过渡,弱化工件与背景的

边缘轮廓,并添加稀疏噪点增强真实性。 调整噪声强度参

数为 0. 3、0. 6、0. 9,添加遮挡物,效果如图 13 所示。

图 13　 处理后效果图

Fig. 13　 Renderings
 

after
 

processing

　 　 分别用 SAM2、Mask-RCNN[48] 、GrabCut 算法对原始

RGB 图以及处理后的 RGB 图进行分割,得到的掩膜如

图 14 所示。
不同算法的分割性能好坏选择具有代表性的 IoU 和

F1-Score 作为评价指标[49] ,IoU 用于衡量预测分割区域

与真实分割区域之间的重叠程度,边界 F1-Score 用于衡

量分割区域的边界的预测质量,具体结果如表 1 所示,在
原始图像的分割中,SAM2 的 IoU 和 F1-Score 得分分别为

0. 994、0. 997,略低于 Grabcut,但显著优于 Mask-RCNN;
噪声强度增至 0. 3 时, SAM2 的得分与 Mask-RCNN 和



　 第 10 期 宋　 涛
 

等:SAM2 融合 RGB-D 坐标转换的工件几何参数测量 339　　

图 14　 分割效果对比

Fig. 14　 Comparison
 

chart
 

of
 

segmentation
 

effects

Grabcut 表现相当;噪声强度增至 0. 6 时,SAM2 的分割性

能轻微下降,而 Mask-RCNN 性能显著降低,Grabcut 算法

分割能力完全失效;噪声强度增至 0. 9 时,SAM2 分割性

能仍然保持稳定,维持在 0. 93 以上,而 Mask-rcnn 已降至

0. 9 以下,掩膜已经失真,Grabcut 仍然失效;在小物体遮

挡场景中,其表现接近 Grabcut 的峰值并明显优于 Mask-
RCNN。 由此可见,SAM2 不仅在理想条件下表现出色,
在各种噪声干扰和遮挡情况下仍然具有较强的鲁棒性和

稳定性,是复杂实际应用场景中的优选分割方法。

表 1　 不同算法分割评价指标

Table
 

1　 Segmentation
 

evaluation
 

metrics
 

of
 

different
 

algorithms

测试图像 指标 SAM2 Mask-RCNN Grabcut

原始图像

噪声强度 0. 3

噪声强度 0. 6

噪声强度 0. 9

小物体遮挡

IoU 0. 994 0. 959 0. 998

F1-Score 0. 997 0. 979 0. 999

IoU 0. 940 0. 944 0. 948

F1-Score 0. 969 0. 971 0. 973

IoU 0. 937 0. 734 0. 019

F1-Score 0. 968 0. 846 0. 037

IoU 0. 933 0. 773 0. 002

F1-Score 0. 965 0. 872 0. 004

IoU 0. 988 0. 942 0. 998

F1-Sore 0. 994 0. 970 0. 999

3. 3　 尺寸测量与精度分析

　 　 在基于 SAM2 融合 RGB-D 图进行尺寸测量的实验

中,为验证方法的准确性与有效性,采用卡尺测量结果作

为真实值基准,并将所提方法的测量结果与点云测量值

一并与卡尺测量值进行对比评估。 其中,点云测量值通

过点云处理获取:先将工件点云数据进行调平滤波处理,
利用工件的最大外接长方体包围盒提取工件的长度、宽
度、高度 3 个几何参数,确定点云测量值。 卡尺测量值则

通过精度为 0. 01
 

mm
 

的电子数显卡尺对工件进行多次重

复测量,并取平均值以获得高精度的真实尺寸数据。
在套筒直径测量时,选取其 8 处不同直径处进行测

量。 利用所提方法对其在系统中进行 8 次重复测量,取
平均值,利用外接长方体包围盒获取点云直径,确定点云

测量值,利用电子数显卡尺得到卡尺测量值。 测量结果

如表 2 所示。

表 2　 套筒直径测量结果对比

Table
 

2　 Comparison
 

of
 

sleeve
 

diameter
 

measurement
 

results
 

(mm)

序号
所提方法

测量值

点云测

量值

卡尺测

量值

所提方法

测量误差

点云测

量误差

方法间

差异

1 33. 588 33. 601 33. 590 -0. 002 +0. 011 +0. 013

2 33. 582 33. 571 33. 620 -0. 038 -0. 049 -0. 011

3 33. 570 33. 616 33. 580 -0. 010 +0. 036 +0. 046

4 33. 611 33. 609 33. 620 -0. 009 -0. 011 -0. 002

5 33. 631 33. 622 33. 610 +0. 021 +0. 012 -0. 009

6 33. 575 33. 588 33. 590 -0. 015 -0. 002 +0. 013

7 33. 622 33. 636 33. 590 +0. 032 +0. 046 +0. 014

8 33. 624 33. 627 33. 610 +0. 014 +0. 017 +0. 003
绝对误

差均值
0. 017

 

5 0. 023
 

9 0. 013
 

8

误差 RMS 0. 020
 

7 0. 027
 

6

注:RMS= (Σ(误差 2) / n )
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　 　 所提方法测量绝对误差平均值为 0. 017 5
 

mm,最
大误差-0. 038

 

mm,最小误差- 0. 002
 

mm,平均相对误

差为 0. 052% , 均 满 足 精 度 要 求, 均 方 根 ( root
 

mean
 

square,RMS) 为 0. 027
 

mm, 可见测量结果具有良好

的一致 性 和 可 重 复 性。 点 云 测 量 的 平 均 误 差 为

0. 023 9
 

mm,RMS 为 0. 027 6
 

mm,均高于所提方法的测

量结果。 直径测量随套筒长度变化如图 15 所示,可以

看到除序号 2 和 7 的直径测量中所提方法测量和卡尺

测量误差偏大,分别为- 0. 038 和+ 0. 032,其余的直径

测量误差均在 0. 025
 

mm 内,由此可见,所提方法与卡

尺测量的误差主要来源于结构光点云采集过程中的精

度限制。

图 15　 直径随套筒长度变化趋势

Fig. 15　 The
 

trend
 

of
 

diameter
 

variation
 

with
 

the
 

length
 

of
 

the
 

sleeve

　 　 在对套筒进行单一参数测量后,已经验证了所提方

法对简单立体几何工件参数测量的有效性,为验证更加

复杂的几何体工件的测量效果,添加钳具和电机的测量

结果。
钳具和电机测量的几何参数如图 10 所示,使用所提

方法,对钳具序号 1 ~ 6 和电机序号 1 ~ 5 的参数进行 8 次

测量取平均值得到所提方法测量值,然后以卡尺测量为

标准计算误差,结果如表 3 所示,钳具测量:最大误差

为+0. 045
 

mm( 序号 6 ), 最小误差为 - 0. 010
 

mm ( 序

号 5),平均相对误差为 0. 064% ,满足精度要求,误差

RMS 值为 0. 032 7
 

mm,表明整体测量稳定性较高。
与此同时,各个参数的测量误差标准差在 0. 011 ~

0. 032
 

mm 范围变化,如图 16( a) 所示,不同参数的 8 次

重复测量值波动较小。 参数 3 的重复测量误差标准差最

大,数值为 0. 032
 

mm;参数 6 的重复测量误差标准差最

小,数值为 0. 011
 

mm。 如图 16( b) 所示,不同参数 8 次

测量误差均在 0. 050
 

mm 内。 序号 6 第 4 次测量误差最

大,为+0. 048
 

mm;序号 4 第 4 次和序号 3 第 6 次测量误

差最小,为+0. 001
 

mm。
电机测量:最大误差为-0. 035

 

mm(序号 2),最小误

差为-0. 012
 

mm(序号 1),平均相对误差为 0. 186% ,均
满足精度要求,误差 RMS 值为 0. 023 7

 

mm,表明电机的

整体测量依旧具有较高的稳定性。 各个参数的测量误差

标准差在 0. 012 ~ 0. 036
 

mm 范围变化,如图 17( a)所示,

　 　 　 　 表 3　 钳具及电机几何参数测量结果

Table
 

3　 Measurement
 

results
 

of
 

geometric
 

parameters
 

for
 

the
 

clamp
 

and
 

motor
 

(mm)

参数

序号
钳具 / 电机

所提方法

测量值

卡尺

测量值
误差

1

2

3

4

5

6

RMS

钳具 27. 018 27. 050 -0. 032

电机 31. 291 31. 303 -0. 012

钳具 50. 632 50. 610 +0. 022

电机 6. 067 6. 102 -0. 035

钳具 38. 390 38. 420 -0. 030

电机 15. 980 16. 006 -0. 026

钳具 126. 454 126. 470 -0. 016

电机 20. 701 20. 724 -0. 023

钳具 62. 840 62. 850 -0. 010

电机 33. 501 33. 486 +0. 015

钳具 38. 325 38. 280 +0. 045

钳具 0. 028
 

3

电机 0. 023
 

7

不同参数的 8 次重复测量值波动略小于钳具测量,参数 1
的重复测量误差标准差最大,为 0. 036

 

mm;参数 2 的重

复测量误差标准差最小,为 0. 012
 

mm。 如图 17( b) 所

示,不同参数 8 次测量误差均在 0. 050
 

mm 内。 序号 2
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图 16　 钳具测量

Fig. 16　 Clamp
 

measurement

图 17　 电机测量

Fig. 17　 Motor
 

measurement

第 4 次测量误差最大,数值为-0. 042
 

mm;序号 5 第 7 次

测量误差最小,数值为-0. 005
 

mm。

4　 结　 　 论

　 　 针对传统接触式测量效率低下且现有 3D 视觉测量

方法在普适性和复杂场景鲁棒性不足的问题,提出基于

SAM2 融合 RGB-D 坐标转换的非接触式主体参数测量方

法。 搭建了双目立体视觉平台采集目标工件数据,利用

SAM2 的零样本泛化能力实现高精度分割,结合掩膜优

化、PCA 骨架提取和深度图三维坐标转换,计算几何参

数。 实验结果表明:在套筒、钳具和电机这 3 类工件测量

中,平均绝对误差为 0. 022
 

μm,相较传统点云测量系统

精度提升 26. 78% ,且主体自动测量显著提高了测量效

率。 本方法对具有对称结构的工件具有普适性,但在非

对称异型工件的主体尺寸测量方面尚有待继续研究,同
时,深度图转换耗时较长的问题在未来的工作中有待跟

进解决。
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