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Adhesion state sensing method for a gecko-inspired multiscale gripper
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Abstract:To address the shortcomings of existing gecko-inspired adhesive structures in real-time state sensing and active control
capabilities, this paper proposes a bio-inspired multiscale adhesive structure with sensing capability, based on by the adhesion regulation
method and sensing mechanism of the gecko's lamella-setae hierarchical structure. The structure consists of a millimeter-scale boot-
shaped elastic substrate integrated with a micrometer-scale mushroom-shaped adhesive array. By utilizing shear motion to achieve
controllable adjustment of the contact area, the structure uses forward shear to increase the contact area for strong adhesion, while reverse
shear enables easy detachment through interface peeling. A simplified inclined prism model of the multiscale structure was established to
theoretically analyze the evolution of normal stress at the bottom surface of the boot-shaped structure during the preloading, shearing, and
peeling stages. It was found that the normal stress at the inner edge of the bottom surface is sensitive to preload and shear forces, and its
abrupt change can serve as an effective feature for identifying the peeling stage. Based on the bilinear traction-separation theory, a finite
element model of the multiscale adhesive structure was developed to simulate the complete adhesion process, validating the controllable

adhesion mechanism and the phased characteristics of stress evolution at the bottom surface. Guided by theoretical and simulation
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analyses, a thin-film pressure sensor was integrated into the inner backing layer of the bio-inspired multiscale adhesive structure, and

experimental tests were conducted on its adhesion and sensing performance. The results demonstrate that shear motion significantly

enhances the adhesion performance of the multiscale structure, with the adhesion force reaching a maximum value of 1.98 N at a

displacement of 1.4 mm. Moreover, the sensing signals exhibit a clear correlation with the normal preload and shear displacement,

enabling effective identification of adhesion, slip, and detachment states. The developed opposing-grip bio-inspired adhesive gripper

prototype has successfully achieved stable grasping, controllable release, and state sensing on various smooth surfaces, such as glass and

silicon wafers, with a maximum load capacity of 1 kg, verifying its potential for robotic manipulation applications.

Keywords : gecko-inspired multiscale adhesive structure; controllable adhesion; adhesion state sensing; adhesive gripper

0 5

T

PLES N TFIRAE D HLER N BB 28 B oK B AT 4%,
LR RS H 2z o R R ML AR S BRR
(RS R B A A% L, 6 T HAe B 3R s h b A TR
YNAZHFSEH Y SR, BUA il 5iE 28 S8 7 12 fk S 1 1)
R BRR AR IR 5 = Sl 45 O I AE B SR B HE DA
HLEF AT TCAT SE U sl M RE LA A Fo s 22 e 55 Ly Hhoxsf
S RN 5 Sh A D)oK

H AR A BE P R s A 2R ERE T , X AU 45
TGOS B 254 , SRR T 5 e R A i s - L
TR IR RI R P ML B RT3 3 o 28 s 5t SIZ s J R A T 422
fdeER A | SRR R s far o3 A1 5 WL BE S5 AR 422
fil iy 135 RGBS AT AT 4R RS AR LR B0 07 BE PR ORG
BRF 25 T AR T RE B 0% J2 SORG B 45 4, e =2 % A T
bR A A SR 5 = sl PR e T, ik ™ B T A
JEREGLZS A il B K BN 2k 45 4l b 7 G 9z B
o flhn, ICEEPLES Nz it 72 b 3 8 8 i 3h & =
SRR S AS I, AT 5 AL A i el

TSR, BE SR HA R G R E  OK W &
SR T4 22 RUBE 73 G A5 K8, AR R HE N T . S22 fh
TR, 2 S TR Rl O 0 B S RS B 32 ke IR
TG ST Autumn 255 SRS A 0 AR KB
FPRE AT A, N SESG T 30HIE T iZ L, B8k dE A, BE
JE R 38 L 1T A 28 2 3 g A TRUORG BRS8N R
Y YIS BGOSR, 8 2 A1 FE B0 S R e B
“SERRNBE S B e T

7B PR AV BE NI B Al 25 R0 I, D A R A R B 25 4
MRS IS T 0 R K AR H AR R IR 1
SERE ST ARG R 51 S B M A S AR BRI A E
i G 2 A R B R AR BE . S SE B RT R B, BT
NGB T 22 R XF R &5 4, st &34 S0k | 4 0E 14 571
AT S AR A% ) SR S B T RN R b T kG
B SR, X e 5% = 2 e GOULRUBE | 1 o 78 40 S 80
S ARURE T RET R R 0 1) 2 L5 R4 R AROUE M1 B Al AR S B 32
SHEEIIRE

TERGFRIRZS AN 7 T, BRAT BF 57 368 308 2o T TR RS
BFE8 A 2 B e R R W S A B RL Y iR A 2 BE B
DR p v IR R T AR IR R T, S
BT NS S EE RS PR S R BN T RE . A BT
5 B R )P s B ol 5 A SR e A T HILAR N T4 3 T A D
FEJ343 A O3 3 45 H BT e A A s BEL IR B, 9
T, (75 A2 25 U PSE s RS 235 44 368 3k V1) 1) B U113 3l 552 B X R
ST S A PR R BRE S 18T i 15 U0 1) AR 285 1) P [ J
RTTEAA T IRABITE

BRI 05 ARG SR R RO IR 5 22 4 BORAS
SR TS A AT BE PR DAL B2 - W B 2 9, i
PEEVESSING R OIS IN R /2L PSR
BT ORI B i PORS R P51 254, SE B T Sk B — 5
JIE AR (4 T RGBT DI RE , BP9 1 2 Tl s ) A e (1 R
BRRARES I 1k S8 T U 5700 B R A i R, I
TFRE T FIIR S5, 1 1] 3 245 2 2 B Y HIL 2 A9
BRARRAL TR T

1 B REMMEREERTRERES

1.1 BREMMERGERT

W [ AN 14 B A — M 6 235 ) K K O () DT 4 AL B 5
ARG ES B T AL W 1 (a) P BE
RS 2 T 7355 2 HCHE KLU HE S 1) B A2 4, A
AR T RN o R R A 4 T D L 9 R TR R AT B
DIz gy, (1 B I 3T BE T, 110 25 184 I =6 5 R T ) 2 ik T
T, DT P2 A A 2k LA R B

LAY sl N ey e NP S
GHOE S5 F AR B i PORG B S5 A ZH R, A &1 1 (b) Jir
TN WA BAT S AR I RE Ty, 4 50T R T A3 1
JEI8 i By U132 B4 ] B fk v ARCRIORG R Sy, 58 B2 00 AT
PEbk . BE G PORG B 25 1 55 2 TR 80 20 [a) 7 $ ik, 42 43t
SR RGN 0, HEIE S B R R O B T R R e
(polydimethy siloxane , PDMS) FEJIE , B 2k HRAR B 50 0T ph 2R
A FERE S 5E (polyvinyl siloxane , PVS) B4 } il 25, #EFE
S5A0 S IRESH A RAT ZEU0 K 1 (c) B, BUB 4514
B IUAT 28 3= 2 A4 - T (5 B T R K B L AR



320 % & L F ¥

a6t

i

BERTE

BEMEE

(a) BEPZRBE 2 RTHEIN 4

(a) Multi-scale adhesive structure of gecko footpad
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(b) 3D schematic model of the bio-inspired boot-shape
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(c) Schematic of the gecko-inspired, multiscale adhesive structure
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Fig. 1 Design of gecko-inspired multiscale controllable

adhesive structure
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Table 1 Parameters of the gecko-inspired multiscale

adhesive structure
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Fig.2 Simplified cantilever beam model of a boot-shaped structure
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Fig.3  Controllable adhesion mechanism of the multiscale structure
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Fig. 4 Simplified model of normal stress evolution at the

bottom of the boot-shaped structure

TERG TR FRAY 3 A B, BUIE 45 1 i T BE 25 b
A8 x A RYEE T T3 4B AT i 2 (2) ~ (4) 153, KT A
Mz (v=—a/2) HE(x=0) AMBZ (x=a/2) B
N AT (5) ~ (7) f33), TEFUR A ) B, i n)
W T o J7 1) S RS0 AT TR B B Bk 1] By ) A 3 4
G3AR  PURS B B IS T 1) B ) 5 U ) PR SR G
F,Hrp MU G N BN Ty, b i S N3 2 R N T
H N h Sk 1 13 ) 28 A R e dn ol B 3% . TEBT TR B,
JREE N ) 5850 ) F R R AMU & AT hhL
WY A1 25 S R g g, 79 2 A8 Ak s A ] o i 0 oy
PEE AR RS o Y E AR 2 B BE B IS TT V% 1) ;7
5001 Q BEMRR  IMULGAT RN T, s X
FEIVE 3, 00 A0 370 5 1k 1) 7 g 74 Al s 3 B R, IR I B B
R HY R 05578 R 7, B

P Pe,
o) === @)
P Pe, Fh,
% Fh,
om0 T o
a\ ela_i
01(_?)_(5 A)P
P
U'(()):X (5)
ay__ (e, 1
01(7)_ (21+A)P
a _ el(], 1 Fhla
02(_7)_(7_1) 21
P
02(0)——1 (6)
a _ e.a 1 Fhla
”2(2)__(7+X) Y]

3] (o
o \mo) T w) Y
Q

0,(0) = (7)

a 1 esa Fh,a
03(7) ) (f +E) oy
2 7 T AR, A SR T T AR

LRSI AT AN 300 2k 1) 10 0 U 5 5 )
3 W SO e Ry AR, LR TR Y 948 AR W] AR D iR
SR S BT BEAY B AR AE R ARG BEER 285 52 i i 5 )
Wi RS

2 HEMEEGESBRAEKES T

2.1 HEBREMMEMARTER

BE T X 5 IR P 45 Rk B 45 ) 4R BT — 1 5 0o R 1 3
VAT, HE TR B2 R RS B0 ) 2 04 A B T 0 B A
TERG 45 F 55 2 T AYH AT b SR R AR A2 5 -0 8
FEf8 (cohesive zone model ) 15 LAY B 45 44 5 K| PE i 2 [8]
HIRGBRAT R o A 5 Ca) B2 o T S BT N SRR,
& AT f i L B8, 6" Ry 473 58 4 45 BRI I A S
F T LT 5L B PO DR/ IN A L Y P AR LA T v 6
8 AR A A7 B BRSO 4, T e 9% 6°
8" 439124 30 #1100 nm'*

5 RUBE T 2T 5 AL TR B AN B i B rh 2 kAR
FRYBMEIEAS | J& T RS B, SR HIR R0 A8 B UL BE
T3R8 )R AR [R] I B ] i RURE T A5 A B
SERG I BT AR BEA R R PE | e 2R T Ogden A7 SR 4 A
T BRI B3 7 =10 AR AT R

FRRITAT B AR E Abaqus R4 A 54 35 B G
& 5(b) Bz e o BT v, Hh T RG B 495 K AR T 1
TET ) DB 500 | e R WP T g 2 T R B 25 A 1 3 i
NI O B Z5 A8 B P A% 2 8 S DU 1 s R - IR
VS FR 43 P 4% BAJC (4-node bilinear plane stress element
with reduced integration, CPS4R) , K I 5 4 Bk 45 44 =2
() Rk B 1 FH A 3 422 ol J % P A9 Cohesive Behavior F1
Damage B E S [N, ph T P 4 fih 1o 22 TR AH DX 3 3
BB/ BTE A SCHE A I 16 /N1 sl 4 ik
2.2 HEBRESMMMERGESH

X Kl B AR E AT BROT O LR b e T | BT VISR S
IS )t B IEAT 0T, AR 6 TN, A TRUEE Al B B B
1 1) (SR AT AN , PP T T 25 0 A 2 A 42 f , il B
S5 RTINS A8 05 M PR T B e, A
Iv) 50 B, Wi 12 [ 0 T PRt o o S 05 40 328 T A
AR | WA T 55 b B 445 4 22 8] B 422 fk i 2 1 OR . 7



322 % & L F ¥ ¥ 468
A 02
po| _AGRETT) 01
| 0
ﬁ’ | N )
P I # z 0.1
T/ GBI R 0, HUE E
: il K lmew . ww B
o 5 & -03 & L <t
(a) WLk A5 -5 B ~04
(a) Bilinear cohesive zone model Foay =
BB, 1A 0 e
- = R N E—JI /S
7 ha _\ﬁuﬁﬁi ‘ ,
Ei] B 7 KGR 28AA R R — ) 2 i R r 835 ] 3 ARk R 3

MM GRIE
CPS4R M % 35T

REEA S

BRERE : U1=U2=0
(b) B FRICH EAEEY

(b) Finite element simulation model

K5 ATl AR R i

Fig.5 Finite element simulation model and settings
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Fig. 6 Simulated adhesion and peeling processes of

the adhesive structure
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Fig. 7 Simulated variation of normal force in the adhesive

structure during the adhesion-detachment process
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Fig.9 Variation of normal stress during the adhesion-detachment process of the adhesive structure

gmLE .

! AR

6 mmlﬂé\s mm ] FHE
M HEE |

10 mm 40 mm 6 mm :

| R

K10 IR RIS T Kt
Fig. 10 Dimensional layout and structural schematic of

the thin-film pressure sensor

RN 5V, R B 2540 52 7 i, SRS T g A% S 19 Fi
FELZ A 2 TR A D JFE 79 i 14 FL TR 728, AT 5 B AL L
(EReEILNER Ry UL 208

(0]

B JBME SR AR R R 1A
Fig. 11 Schematic of the sensing signal

acquisition circuit



324 % & L F ¥

a6t

3.2 RERAMENHEBERESZRGE

P12 (a) ot A5 g A2 S 2 19 7 22 B RUJEE R
Wres kbl s i B, BRSOy 1) OB 45 1
PR e | IF A N B ST BRI RS A7) 5 2) e i
e AR L A s O o b i 58 W) 26 265 3) sl ik
e O LK 907 1 g A% S A A AR E 1 9
UCHR T ik I 3 70 i Al s B, 0 O A S A 15 A A 1R 2 1]
BRRAE 4) F R T AL 3 h, B AT B A B T he
R BTE S5 0 5 5 ) K A B T ) B 2 DR I 82 RS 00t 7 Bt
T AR T o 2 THT , A 21 ELAT JER1 2 BE A 55 RUEE K BT 45
oy, I 12(h) B, D9 A 0RO R g o A X 4
AR, il £ 3k R T O BT ) A SR R I T 0 R
FEN Sy o SO e v AR SR PR 32 TR A, 45 %
FURL L T3 A I, A5 TS T i DX 318 s 1z g A LR T
o USRS .
i I B UR AR

B

iii. 25 L EAR

Vi AR FE L i
BRIREH

B
- R =
BWREWL

3h

(a) ELAT BRI T B ARG R & ¥ th1) 2o B ]
(a) Fabrication schematic of the adhesive structure with
integrated sen sing functionality

AT

HRE Ty
feias

BRI 5
(b) B RN TH BRI B 25 S TR
(b) Photograph of the adhesive structure with sensing functionality
P12 HAT I BE B RG B 45 A il 4k e K Sy
Fig. 12 Fabrication process and photograph of the

adhesive structure with integrated sensing functionality
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