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Improved cycle-consistent generative adversarial network for mechanical
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Abstract : Mechanical equipment operating under complex working conditions is highly prone to failure. If such failures are not diagnosed
in a timely and accurate manner, they may lead not only to performance degradation and economic losses but also to serious safety
accidents. Therefore, developing efficient and reliable intelligent fault diagnosis methods is of significant engineering importance.
However, in real industrial scenarios, the number of fault samples in monitoring data is usually limited, resulting in data imbalance
problems that severely constrain the accuracy and robustness of traditional diagnostic models. To effectively mitigate this issue, this paper
introduces spectral graph convolution and a hybrid attention module, and proposes an improved cycle-consistent generative adversarial
network for generating high-quality fault samples, thereby enhancing intelligent mechanical fault diagnosis under imbalanced data
conditions. Specifically, spectral graph convolution models global pixel dependencies through sparse adjacency matrices, improving long-
range feature interactions while reducing computational complexity. Meanwhile, the hybrid attention module dynamically assigns weights
at both channel and spatial levels to highlight critical regions and strengthen feature representation. With the proposed improved cycle-
consistent generative adversarial network, more realistic and diverse fault samples can be generated, effectively augmenting minority-
class data and alleviating the limitations imposed by data imbalance on intelligent fault diagnosis performance. Experimental results on

the Beijing Jiaotong University metro bogie dataset and the Soochow University bearing dataset show that the proposed method

Wik H 17 .2025-10-02 Received Date: 2025-10-02
* JEATH . F K A RFPFEES (52405124, 52575131) 45 RF4A 42 (2025M771322) T H B B)



5510 1]

FAAE A T R A T HUAE BE RIS W A SR DG R — Zd s BT I 4 97

significantly outperforms comparison approaches in three image quality evaluation metrics and fault classification accuracy. These results

validate its diagnostic effectiveness under imbalanced data conditions and demonstrate that it provides a practical and feasible solution for

addressing data imbalance challenges in industrial applications.
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Fig. 6 BJTU-RAO bogie test bench
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Table 1 BJTU-RAO dataset (rpm) Table 2 Soochow University bearing dataset
fa R A A 230 (mm)
SR INVR B A i e 1 500 fR RS (3N
Sl 1 500 P REINR i e 0.2
TR B At 1 500 P R 71 i s 0.2
SRR sh A 2 000 P Pl e i 0.2
Sl 2 000 SR 0.2
TR AR 2 000 R Wb 0.2
SRR A 3 000 P i 0.4
B 3 000 SRR 0.4
TR AR 3 000
YRR, 50— 20 e 4y [ ROSF 9 =l 18 RGB &

Bl 7 SRR R SR S0
Fig. 7 Rolling bearing test bench of Soochow University

9T AT AN [ B AR, S R R IR R T
TEBGRES. 0.2 mm P IE R 0.2 mm VR TR
0.2 mm ZMEHEE 0. 2 mm B S5EFE AT 0.2 mm
PN P 5 AN A Al 0. 4 mm PR PBIEKEE | 0. 4 mm AME K
B, BORAE 2 RGNS B AN 2 B,

H1 T 1-CycleGAN BRI LAEMBOE XA i A
ISR B (R S SR AR 20 15 5 Sl 8 5k 3 /N D AR B B Ak ol —

8. ZEARIFRAE MATLAB 3 PT%I}L,RGB BG AT
3 T 5 SRR AE SR S BB 7 505

) e LR R R IR L B FLSER AR R AR
HS5UNGEA R G e R e e AR ES, A& E ]
A CEE | v A A R 1) R, X — B ORIE T
S 2 S B LR RS (AR AR ) PEAR B B A
PERIAT (5 R
3.2 BEREMERETM

A ARSI 1-CycleGAN FERUHE AN 25 F 1 &
AERCRE ) AT BT 30 1 W TR T R SL S O 2 A
F 0 A X P 4 3E AT X L, £ 3 FP-CycleGAN
CycleGAN Dual GAN'"" DiscoGAN'™' il LoFGAN,, 3@ 1 %] Lt
ST BRI AN R SR R T R S 1S

R SR A VPAL AR SCIE IR 3 IR 4 A AT
He Al 28 S 9E AT PF 4 : FID ( Fréchet inception distance ) |
LPIPS( learned perceptual image patch similarity ) Fl SSIM
bk A e AR B
ST B PEAN, DO 4 TH 5 UE 5 Tk i O R
FID (SSIM | LPIPS REW ] Tl it A iR 5 B L BB 2

(structural similarity index measure ) '



5510 1]

FAAE A T R A T HUAE BE RIS W A SR DG R — Zd s BT I 4 103

) A ARRLEE BRI =, FID 5 LPIPS {H /)N SSIM {H
AR, $ R A R PR S LS PR AR (P 5, P13
AR

SLH Y 1-CyeleGAN 1) E BB R . I G4 Ok
300, 2% > Z[E 5 R 0. 000 1, L4k 28 K Adam, Hozh# 25k

WR 0.5, FIBIE IR EG Z W B e p =0.9, 5
IR 1F - A £ 45 E5-2690v3 CPU. 96 GB P f£ DL K
NVIDIA GeForce 2080Ti GPU

23 4 TR O B SR O e B4R 1 AR
£ 2 BRI IEAGZER ,

&3 o MAEHEETMLIERTESER

Table 3 Quantitative evaluation metrics calculation of six methods

Jrik

FID

LPIPS

SSIM

B 1

itk 2

B 1

HHnsk 2

L1

BAngE 2

I-CycleGAN

FP-CycleGAN'®]

33.158(+1.430)
115.403(£3.450)

68. 195( 0. 520)
108.295(+2.230)

CycleGANIS!  156.543(£4.210)  141.380( £3. 630)
DualGAN!' 132.321(%2.510)  105.877( +2.230)
DiscoGANI2)  141.380( +6.780)  120. 343( £2. 670)
LoFGAN!'?] 150.982( +4.190)  115.686( 2. 100)

0.229(+0.013)
0.283(x0.029)
0.331(+0.069)
0.301(+0.054)
0.286(+0.093)
0.321(+0.057)

0. 167(£0.019)
0. 188( £0.017)
0.286( +0. 028)
0.269( £0. 036)
0.299( £0. 033)
0.285( +0.028)

0.793( 0. 012)
0.792( +0.011)
0. 764( +0. 043)
0.781( 0. 063)
0.781( +0. 095)
0.772( +0. 053)

0.890(+0.014)
0.884(+0.019)
0.781(+0.057)
0.795(+0.093)
0.771(+0.102)
0.779(+0.061)

R 3 rn] LG i A 2 5 1 1-CycleGAN 7
3 T bR (FID SSIM \LPIPS) b3S iR i3RI, HAAK
&, 1E FID 4845 I, 1-CycleGAN TEECHEAE 1 F12 Wh3r5 K
33. 158 1 68. 195, AL T HiAl 777, 2 1-CycleGAN &
BCEMG ) 43 A1 5 B8 420, B B s A LSk
TE LPIPS 3845 |, I-CycleGAN 3 %353 0. 229 5 0. 167,
AH LA v O 3 b 25 150 IH HG A o 45 SR A BHTRE R
R SR B R, S IR, 7E SSIM 5 AR
I, I-CycleGAN 7EECHE £ 1 F1 2 H 4351k 0.793 5
0. 890, 34785 FXF Lb 7 i, Uk P L B A% B A b R 415 [R5 45
Faf B 5 4RI

SRS, T )7 FP-CycleGAN 7E SSIM #5845 | 3%
PRAEXF #2342 5 5 [-CycleGAN , {HYE FID F1 LPIPS |-
A7 #E B K 22 5, X Eb J7 ¥ CycleGAN | DualGAN |
DiscoGAN Fll LoFGAN NI 7E 3 Ti 48§ 5 I ¥ g &% J5 T
I-CycleGAN, Jo HJEAE FID 5 LPIPS $545 I, 22 i e o

T i A LA i s v A o RS S | B = e ol o <
e,

25 LTk, 1-CycleGAN 76 PR A 5H8 42 F1 3 TR 45
b T B I R B MERE L 3, R A% 2k BT 42 3T LS 40
A ELZEHE 2015 53 A %) TR, SR B AN P R 12
WP AT 55 B4 1 B vy o ) B A
3.3 HEASKIE O

N T RIS E BTG IR AR A A A
PEREM BTER , R SCHFAT TIH LSS S, o IR T W A AR {4
R, — P R A AR B8 1% (1 46 BN RS BR IR A5 1 A 1 A By
1-CycleGAN-w/o0 H; 55— R AU FHR 5 1 2 1 A
FEBR 1 I BUZ Y T-CycleGAN-w/0 S,

F 4 JBIR T 1-CycleGAN K H PR A AL BHESE 1 Fn
2 PRy L EAL 255, vl LA B F ) S8 219 1-CycleGAN
TEFT A FahR LU0 T AR K B0E TS EG IR S5IRG
TR R SRR o )

R4 HUIBINEEESITHE

Table 4 Quantitative metric calculation in ablation experiment

FID
Tk

LPIPS SSIM

BlasE 1 Hidlatk 2

HARAE 1

Hidatk 2 otk Hidlatk 2

I-CycleGAN 33.158(+1.430) 68. 195(£0. 520)

I-CycleGAN-w/0 H  40. 811( £2.310) 87.275(+5.210)

I-CycleGAN-w/0 S 46.555(+3.190) 80. 513(+4. 690)

0.229( £0. 013)
0.235(+0.017)

0.243(+0.023)

0. 167( 0. 019) 0.793(+0.012)  0.890( =0.014)

0.172(+0.015) 0.789(+0.011) 0.874(+0.012)

0.176(+0.018) 0.762(+0.009) 0.782(+0.023)

BT 7, 16 FID 845 |, 1-CycleGAN 43 5] B 5
33158 (K PidE 1) 55 68.195 (S 2), W EMXT
I-CycleGAN-w/0 H Fl 1-CycleGAN-w/0 S, ¥ B 24 2= [ 1T

— RS AR R B B MR S S R o A B i R
YA BT R M, 16 LPIPS 4545 |, I-CycleGAN 43 %1 35 %)
0.229 5 0. 167, LI AE; W P AP AZ R 9 LPIPS {HI9 4
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fr BTt ) R I-CycleGAN-w/0 S EREE LRI E
0.243, 7E SSIM $545 I, 1-CycleGAN [AlREHUSFe 45 51,
FHILZ N, RBRIB A I JIBHLY [-CycleGAN-w/0 H B
H B, T L BRI R AR 1-CycleGAN-w/0 S FAME BT K

XL ZE BT Ay B | PR AR B e A i RS o e A 4
P ORFE I T R AR T OV E . 15 G R RE A Al 4 0T 2R
GRGTEER 2R &R | 1S ARAE 19 4 R 4 42 fig
3 TR A TE R A o) 38 3 5 2 ()RR B A R
R A T A 455t S AN () 308 T 0 X S A L, B
AT — B HLHR 23 1) 55 A5 A ) e AR TR it — 3 B R4
i, I-CycleGAN 7E A4 R A BS540 T HAR A
3.4 HIE\EAFETHEESHEEEIIE

g — L BAE 1-CycleGAN 75 5038 AN 24 467 25448 F ik
BEIZ Wb B0 A 80, AR SC T T 6 AN A i 3 A AR AR
BRI WHT 55, LAVEAS A= iUREAS 7 2l 3512 Wi v i U T
FIVER, £S5 HHT 6 MESMEREE, %GEHE
SEREAR 55 A AR AR L R R B, FH TN s R A R 5 4
Hmy, HERMES T T 42 MEFREREASR 6 S5
TBREREAS | B2 B AR R AR AR S5 1~6 o3l 6,
12,18 .24 30 #1136 /1>, X FT55 15 B RE A SIS [H)
TR B B AN P 5

x5 BEATFETH 6 MEESEHES

Table 5 Six fault diagnosis tasks under data imbalance

Pl S ML
1E% GREEET R R
AR SBRREARS RO SRR R
551 6/6 42 30
55 2 12/6 42 30
f£% 3 18/6 42 30
155 4 24/6 42 30
%5 30/6 42 30
f£55 6 36/6 42 30

ELRHD TS5 1 rh AR BURE AR BORA PR, B8040 3 A
ATHERAFAE WY 540 2 5 17 Wi £ UM AR 008 32 A0 8 n , Bl
LB T4, X 6 MES Y SEg6 45 R, T LA
FGE M AT A SR A B X R 12 WA B T R )
TGRSR 1 7 ¥ 1-CycleGAN 75 AR i e 5t 1t A% AS 11 28 fi
R 5 T AERT . FRALRAEAL 55 5 A6 A2 i
FEARCE O 5 S0 A LB A XY, BE 6% 4 T KT 50
I-CycleGAN 7E R HUBAEAY 78 5518 N353 28 88U 2Ry 3¢
PERE ) SHRE k. AR ) B AR AR SR 30 S FLAAE
ARYUE, B 5248 T E B, DAARIEPEAS i A P 58

%ll‘io

58I B 4 7 ¥R Y 1R BE O #, A SC ik R FP-
CycleGAN ,CycleGAN ,DualGAN , DiscoGAN #1 LoFGAN iX
5 MO AR X AR PR RO 1 F1 2 19 6 TS5
I3 AT IS WA BE 0 e, 16 8 9 J7R T[]
TETE 6 TS I Wl R, TR AL 5,
1-CycleGAN HYIZ W EBf R 00 2 5 T X L5 vk . X & W]
I-CycleGAN 7EA BREEA ST AR A N5 HLSAEATE K7
IF )2 T8 o FEE — B0 v JoT R A A, DT & 25 i Tl e 70256
BEAL I A0 68 Ty [A) I, 7 HE 2R 1 A ECHE 4R 2 b
I-CycleGAN #4330 H P F X8 5 vk I RS UE e 34, 1 BH Jr
PETEAAE A — R A8 4 A58, ) HEA R 0 540
b/ STYAEN
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Fig. 8 Diagnosis accuracies of different methods

for six tasks of case 1
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Fig. 9 Diagnosis accuracies of different methods

for six tasks of case 2

WEAM AEATSS 1 b, B A 7 i B2 W 1 5 24 1 0 i
IR, e 1 i A S0t oy PR RE R ST R . B AR
BEAKIERZ A SN, VR R A A 52 b TR 3 Sk 1 A
AT BE A A AN S T2 WK B D7 T A DG HEAE ]



5510 1]

FAAE A T R A T HUAE BE RIS W A SR DG R — Zd s BT I 4 105

ZE LT LR R ST UEM] T 1-CycleGAN 78 it
W RS AR Y PR LR AR 5 B SR AR TE R AR
JE T i B — 3, A A SRR AR AL T o7 iy H LA AR
PER YN LB 07 X T 7 FH A 55080 AR ¥4 4 ) A5 g )
SRR %

4 #

BT HILAIRS 45 76 52 2% T00 T 53 A7 75 B B 8 N 24 iy
") L, AR B 5 4R T el 1 AR 2R — B A R R B 4%
(1-CycleGAN) il 5| AT BB 5IR A 2 I,
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