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摘　 要:机械设备在复杂工况下长期运行时极易发生故障,如果不能及时准确诊断,不仅会造成性能下降和经济损失,还可能引

发严重的安全事故,因此研究高效可靠的智能故障诊断方法具有重要工程价值。 然而,在实际工业场景中,监测数据中故障样

本数量有限,导致存在数据不均衡问题,严重制约了传统诊断模型的准确性与鲁棒性。 为有效缓解上述问题,引入谱图卷积和

混合注意力模块,提出了改进循环一致生成对抗网络,用于生成高质量的故障数据样本,从而提高数据不平衡下的机械故障智

能诊断精度。 具体地,谱图卷积通过稀疏邻接矩阵建模全局像素依赖关系,提升远程特征交互能力并降低计算复杂度;同时,混
合注意力模块在通道和空间两个层面动态设置权重,突出关键区域并强化特征表达。 利用提出的改进循环一致生成对抗网络,
可以生成更加真实和多样的故障样本,有效扩充少数类样本,缓解数据不均衡对机械智能故障诊断性能的限制。 在北京交通大

学地铁列车转向架数据集和苏州大学轴承数据集上的实验结果表明,所提方法在 3 个图像质量评估指标和故障分类准确率方

面均显著优于对比方法,验证了其在数据不均衡下的智能故障诊断性能,为工业应用中解决数据不均衡难题提供了一种切实可

行的解决方案。
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Abstract:Mechanical
 

equipment
 

operating
 

under
 

complex
 

working
 

conditions
 

is
 

highly
 

prone
 

to
 

failure.
 

If
 

such
 

failures
 

are
 

not
 

diagnosed
 

in
 

a
 

timely
 

and
 

accurate
 

manner,
 

they
 

may
 

lead
 

not
 

only
 

to
 

performance
 

degradation
 

and
 

economic
 

losses
 

but
 

also
 

to
 

serious
 

safety
 

accidents.
 

Therefore,
 

developing
 

efficient
 

and
 

reliable
 

intelligent
 

fault
 

diagnosis
 

methods
 

is
 

of
 

significant
 

engineering
 

importance.
 

However,
 

in
 

real
 

industrial
 

scenarios,
 

the
 

number
 

of
 

fault
 

samples
 

in
 

monitoring
 

data
 

is
 

usually
 

limited,
 

resulting
 

in
 

data
 

imbalance
 

problems
 

that
 

severely
 

constrain
 

the
 

accuracy
 

and
 

robustness
 

of
 

traditional
 

diagnostic
 

models.
 

To
 

effectively
 

mitigate
 

this
 

issue,
 

this
 

paper
 

introduces
 

spectral
 

graph
 

convolution
 

and
 

a
 

hybrid
 

attention
 

module,
 

and
 

proposes
 

an
 

improved
 

cycle-consistent
 

generative
 

adversarial
 

network
 

for
 

generating
 

high-quality
 

fault
 

samples,
 

thereby
 

enhancing
 

intelligent
 

mechanical
 

fault
 

diagnosis
 

under
 

imbalanced
 

data
 

conditions.
 

Specifically,
 

spectral
 

graph
 

convolution
 

models
 

global
 

pixel
 

dependencies
 

through
 

sparse
 

adjacency
 

matrices,
 

improving
 

long-
range

 

feature
 

interactions
 

while
 

reducing
 

computational
 

complexity.
 

Meanwhile,
 

the
 

hybrid
 

attention
 

module
 

dynamically
 

assigns
 

weights
 

at
 

both
 

channel
 

and
 

spatial
 

levels
 

to
 

highlight
 

critical
 

regions
 

and
 

strengthen
 

feature
 

representation.
 

With
 

the
 

proposed
 

improved
 

cycle-
consistent

 

generative
 

adversarial
 

network,
  

more
 

realistic
 

and
 

diverse
 

fault
 

samples
 

can
 

be
 

generated,
 

effectively
 

augmenting
 

minority-
class

 

data
 

and
 

alleviating
 

the
 

limitations
 

imposed
 

by
 

data
 

imbalance
 

on
 

intelligent
 

fault
 

diagnosis
 

performance.
 

Experimental
 

results
 

on
 

the
 

Beijing
 

Jiaotong
 

University
 

metro
 

bogie
 

dataset
 

and
 

the
 

Soochow
 

University
 

bearing
 

dataset
 

show
 

that
 

the
 

proposed
 

method
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significantly
 

outperforms
 

comparison
 

approaches
 

in
 

three
 

image
 

quality
 

evaluation
 

metrics
 

and
 

fault
 

classification
 

accuracy.
 

These
 

results
 

validate
 

its
 

diagnostic
 

effectiveness
 

under
 

imbalanced
 

data
 

conditions
 

and
 

demonstrate
 

that
 

it
 

provides
 

a
 

practical
 

and
 

feasible
 

solution
 

for
 

addressing
 

data
 

imbalance
 

challenges
 

in
 

industrial
 

applications.
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0　 引　 　 言

　 　 作为机械装备的关键部件,轴承、齿轮等在复杂高强

度工况下长期运行时极易出现腐蚀、裂纹、剥落、磨损等

多种类型故障。 这些故障不仅会导致设备性能下降和生

产效率降低,还可能引发严重的安全事故。 因此,如何对

机械装备核心部件进行高效、可靠的故障诊断,主动识别

潜在损伤并保障系统运行安全,已成为工业界和学术界

广泛关注的核心问题[1] 。
随着数据存储技术的进步和计算机处理速度的不断

提升,大数据分析在工业领域得到了广泛应用。 尤其是

基于大数据分析的深度学习智能故障诊断方法,凭借其

强大的特征识别与模式分类能力,在机械装备状态监测

和健康管理中展现出巨大潜力和广阔前景[2] 。 然而,工
业故障诊断任务普遍面临数据类别分布不均衡的挑战,
表现为在实际工况中,设备一旦出现异常通常需要立即

停机检修,导致健康状态数据远多于故障状态数据。 样

本数量的显著失衡使得算法难以充分学习少数类特征,
从而削弱模型的故障识别能力并显著降低整体预测

精度[3] 。
为缓解这一问题,研究者提出了多种改进思路,主要

包括数据层面与算法层面的优化。 在数据层面,重采样

技术(如过采样与欠采样)通过调整不同类别样本数量

来缓解分布失衡,但可能引入冗余样本或丢失关键特

征[4] 。 在算法层面,损失函数加权方法通过对少数类样

本赋予更高权重,使模型在训练过程中更加关注不均衡

类别,从而改善分类性能[5] 。 例如,Han 等[6] 提出自适应

加权迁移网络,能够根据样本重要性动态调整权重,为无

关源样本分配较小权重以避免负迁移,从而提升跨域诊

断的有效性; Jia 等[7] 在卷积神经网络中引入加权

Softmax 损失函数,根据类别不平衡率重新加权小类别的

损失,有效缓解了不均衡带来的精度下降问题。 尽管这

些方法在一定程度上改善了学习效果,但其局限性也较

为突出,表现为重采样方法容易导致样本冗余或噪声引

入,增加过拟合风险;而基于损失加权的方法则对权重系

数高度敏感,不同任务下难以统一设定。
在此背景下,数据生成与增强逐渐成为解决不均衡

问题的重要途径。 其中,基于深度学习的生成对抗网

络[8] 在扩展样本多样性方面展现出独特优势,能够在无

监督或半监督模式下实现数据增强。 生成对抗网络

(generative
 

adversarial
 

network,GAN)作为典型的生成模

型,通过生成器与判别器的对抗训练逐步逼近真实数据

分布,从而生成高质量样本,既提升了数据集的多样性与

代表性,也为少数类扩增提供了新思路。 然而,基础

GAN 在实践中仍面临模式崩溃、训练不稳定和收敛困难

等问题。 为此,学界提出了多种改进方法以增强其稳定

性和生成质量。 例如,Wasserstein
 

GAN[9] 通过引入基于

Wasserstein 距离的损失度量替代传统 Jensen-Shannon 散

度,并结合梯度惩罚技术改善了收敛特性,从而使训练过

程更稳定且生成样本更接近真实分布,但其计算复杂度

较高。 辅助分类器 GAN[10] 在判别器中增加类别分类器,
使生成器能够在多类别场景下生成更高质量和多样化的

样本,显著提升了模型对复杂任务的适应性。 变分自编

码 GAN[11] 则结合了变分自编码器的潜在空间建模优势

与 GAN 的对抗生成能力,在特征建模方面有所增强,但
在捕捉复杂结构和多层次特征时仍存在不足。 与此同

时,研究者还探索了 GAN 与其他深度学习模型的结合。
例如,GAN 与堆叠去噪自编码器的融合能够在生成过程

中学习真实数据的深层特征,从而提升合成样本的质量

与鲁棒性。 Gu 等[12] 提出的局部融合 GAN( local
 

fusion
 

GAN,LoFGAN)通过局部融合模块强化局部特征表达,能
够生成更真实和多样化的图像,并实现语义对齐,在图像

生成任务中展现出良好的应用潜力。 条件 GAN[13] 则通

过在输入噪声向量中引入类别或标签信息,使生成器能

够产生类别特定的数据,极大提高了生成结果的可控性

与实用性。 为进一步缓解传统 GAN 在训练中存在的不

稳定性与模式崩溃问题,深度卷积 GAN[14] 利用卷积神经

网络结构构建生成器与判别器,不仅增强了特征提取能

力,还能生成更高分辨率和更高质量的图像,为后续众多

基于卷积的 GAN 变体奠定了基础。 总体而言,GAN 及

其变体在生成质量、训练稳定性、样本多样性和特征建模

方面不断取得进展,为解决工业故障诊断中的数据不足

和不均衡问题提供了丰富工具和新思路。
然而,上述方法属于监督学习算法,通常依赖大量成

对样本,但是工业数据往往存在难以配对的问题。 因此,
作为一种无监督学习方法, 循环一致生成对抗网络

(cycle-consistent
 

GAN,CycleGAN) [15] 能够在无需成对数

据的情况下实现跨域映射,并通过引入循环一致性损失,
在保持关键信息不变的同时完成特征转换,被广泛应用

于图像风格迁移和无监督训练任务。 此外,特征保留

CycleGAN( feature
 

preserving
 

CycleGAN,FP-CycleGAN) [16]
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针对传统上采样过程中易出现的棋盘伪影问题,采用基

于 U-Net 的生成器结构和 ConvNeXt 模块,并以双三次插

值替代反卷积操作,从而有效提高图像重构质量,在旋转

机械故障诊断中取得了积极进展。 然而,CycleGAN 及其

变体在全局依赖建模、上采样特征表达和计算效率方面

仍存在不足。 具体而言,卷积操作的局部性使其难以捕

捉远距离像素之间的依赖关系,从而导致生成图像缺乏

整体结构建模;虽然插值算法在一定程度上缓解了伪影

问题,但其在特征提取与细节表达上仍显不足;同时,随
着输入分辨率的提升,模型计算复杂度急剧增加,难以在

故障诊断任务中保持效率。
针对上述问题,本文提出改进循环一致生成对抗网络

( improved
 

cycle-consistent
 

generative
 

adversarial
 

network,
I-CycleGAN)。 该方法引入谱图卷积,以稀疏邻接矩阵建

模像素间的全局依赖关系,从而弥补传统卷积在远程特

征捕捉方面的不足,同时谱图卷积中的稀疏图结构能够

有效降低计算与存储开销,从而提升整体效率;此外,结
合混合注意力模块,在通道和空间层面动态分配权重,以
强化特征提取并突出显著区域。 因此,I-CycleGAN 可以

生成更加真实和多样的故障样本,并有效缓解数据不均

衡对故障诊断性能的限制。 基于北京交通大学地铁列车

转向架数据集和苏州大学轴承数据集的实验结果表明,
I-CycleGAN 在数据不均衡条件下能够显著提升生成图像

质量和故障分类准确率,为机械装备智能故障诊断提供

了一种切实可行的解决方案。

1　 理论基础

　 　 CycleGAN 最初主要应用于图像处理领域,其核心

功能是在两个不同域的图像之间实现特征迁移,在无

监督的图像风格转换以及图像生成等领域有着广泛的

应用。
CycleGAN

 

的结构由两个生成器 (GAB 与 GBA) 和两个

判别器(DA 与 DB) 组成,如图 1 所示。

图 1　 循环一致生成对抗网络结构

Fig. 1　 Structure
 

of
 

CycleGAN

其中,GAB 将 A 域的图像转换到 B 域, GBA 将 B 域

的图像转换到 A 域。 具体地,在 CycleGAN 的前向循环

中,A 域真实图像 a 经由生成器 GAB 生成虚假图像 b̂,将

b̂ 经由生成器 GBA 生成重构图像 a′; 在后向循环中,B 域

真实图像 b 经由生成器 GBA 生成虚假图像 â,将 â 经由

生成器 GAB 生成重构图像 b′。 对于虚假图像 â, 不仅应

当具备 A 域图像的风格分布,而且还需要确保 B 域图

像的内容特性得以保留;对于虚假图像 b̂, 不仅应当具

备 B 域图像的风格分布,而且还需要确保 A 域图像的

内容特性得以保留。 此外,判别器 DA 用于判断符合

A 域概率分布的图像是真实图像还是虚假图像,而判别

器 DB 则用于判断符合 B 域概率分布的图像是真实图

像还是虚假图像。
CycleGAN 的损失函数由生成对抗损失 LGAN_DA

、
LGAN_DB

与循环一致损失 Lcycle_A、Lcycle_B 构成。 在训练生成

器时,判别器DA 与DB 的参数固定,只有生成器GAB 与GBA

的参数可调,生成器试图最小化损失来欺骗判别器;而训

练判别器时,生成器 GAB 与 GBA 的参数固定,只有判别器

DA 与 DB 的参数可调, 且此时优化目标由最小化损失转

变为最大化损失。 生成器与判别器的交替迭代构成了

CycleGAN 的对抗过程,使得生成器与判别器的性能在迭

代更新过程中不断得到提升。
考虑到 CycleGAN 在数据生成方面的优势,将其引入

数据不均衡场景下的故障诊断任务具有显著意义。 具体

地,CycleGAN
 

通过学习不同域图像之间的特征映射,能
够生成丰富多样的故障样本,扩充少数类样本,有助于改

善训练数据的分布平衡,提升故障分类模型的精度与鲁

棒性。

2　 改进循环一致生成对抗网络

　 　 针对 CycleGAN 及其变体在全局依赖建模、特征表达

及计算效率方面仍存在的不足,提出改进循环一致生成

对抗网络。 该方法能够更有效地生成高质量图像,缓解

数据不均衡问题,提升故障分类精度。
2. 1　 总体构架

　 　 I-CycleGAN 的框架如图 2 所示。 其主要步骤为:
1)真实图像 a 和 b 分别输入生成器 GAB 和 GBA,生成

虚假图像 b̂和 â。 随后,生成的虚假图像再次输入生成器

GBA 和 GAB,生成重构图像 a′ 和 b′。

2)使用判别器 DA 将 a 和 â 进行比较,计算对抗损失

值,同时计算真实图像 a 与重构图像 a′ 的循环一致性损

失;同样地,使用判别器 DB 将 b 和 b̂ 进行比较,计算对抗

损失值,同时计算真实图像 b 与重构图像 b′ 的循环一致

性损失。
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3)每一对生成的虚假图像与对应的真实图像按一定

的查询概率(总和为 1)存入图像缓冲区。 a 和 â 组成图

像缓冲区,从中随机提取一张图像,命名为 􀭹a。 􀭴b 通过相

同过程生成。 随后,将 􀭹a 和 􀭴b 输入判别器 DAB 进行二分

类,并使用交叉熵函数计算二元分类损失。
4)将所有损失值相加,并通过梯度反馈进行网络参

数更新,最终利用训练好的网络进行数据扩增。

图 2　 I-CycleGAN
 

结构

Fig. 2　 Structure
 

of
 

I-CycleGAN

2. 2　 生成器架构

　 　 为了增强图像的细节表现,生成高质量图像并保持

计算高效性,对于 I-CycleGAN 中的生成器,设计了一种

结合谱图卷积与混合注意力机制的生成器架构,其结构

如图 3 所示。 该生成器在图像生成任务中能够同时捕捉

图像的空间结构与关键特征,提升生成图像的真实感与

细节保真度。

图 3　 生成器架构

Fig. 3　 Architecture
 

of
 

generator

在生成器中,首先通过卷积层对输入图像进行初步

特征提取,并配合 ReLU 激活函数引入非线性增强表达

能力;随后额外的卷积层进一步增加特征复杂度并加深

特征表征。
在图学习阶段,谱图卷积( spectral

 

graph
 

convolution,
SGC)与混合注意力模块( hybrid

 

attention
 

module,HAM)

协同作用。 谱图卷积基于邻接矩阵运算,有效建模不同尺

度下的全局依赖;混合注意力模块通过通道与空间加权机

制突出关键信息区域,使生成器能够自适应地关注最具判

别力的图像区域,从而提高细节建模及特征表示能力。 经

过图学习部分后,特征图进入残差连接模块,以缓解梯度

消失并保持跨层信息流动。 每次卷积后通过 1×1 卷积对

齐输入与输出维度,确保残差连接的有效性与稳定性。
在上采样阶段,生成器采用逐级反卷积层恢复图像

分辨率。 每一阶段结合混合注意力模块强化关键区域特

征,从而在上采样过程中兼顾全局结构与细节表现。 最

终,生成图像通过激活函数输出,得到高分辨率且细节丰

富的重建结果。 此外,在生成器的每一层中,引入层归一

化以提高训练稳定性与泛化能力;同时,采用 Dropout 防
止过拟合并提升鲁棒性。

凭借这一架构设计,构建的生成器能够在多尺度特

征提取与细节重建之间取得良好平衡,最终实现高质量

图像生成。
1)谱图卷积

谱图卷积作为图信号处理的重要方法,能够利用图

的拓扑结构有效增强模型的特征表达能力。 图通常蕴含

关键的拓扑信息,因此在 I-CycleGAN 的生成器中引入谱

图卷积以充分聚合图中的内在特征。
图 4 展示了谱图卷积的结构细节,主要流程为:输入

特征首先经过 K 近邻构建邻接矩阵,并通过权重计算与

稀疏化存储得到高效表示;随后进行图卷积运算,结合残

差连接、层归一化与 Dropout 等机制,在保持数值稳定性

的同时提升特征建模及表示能力;最后通过 ReLU 激活

输出增强后的特征表示。 接下来,详细描述谱图卷积中

的关键环节。

图 4　 谱图卷积

Fig. 4　 Spectral
 

graph
 

convolution

在图神经网络中,邻接矩阵是描述节点间关系的核

心要素。 采用 K 近邻算法构造邻接矩阵,其中对图像中

每个像素节点 v i,选取距离最近的 K 个节点作为其邻居,
从而建立连接边。 邻接矩阵 A 的元素 A ij 表示节点 v i 与

节点 v j 之间是否存在连接及其强度,连接强度则依据节

点之间的相似性来确定,本研究通过欧几里得距离度量

节点间的连接强度。 元素 A ij 随距离增大而衰减,以突出

局部相似性。



100　　 仪　 器　 仪　 表　 学　 报 第 4 6 卷

此外,为节省存储与计算开销,邻接矩阵采用稀疏表

示,仅保存相邻节点的索引及其权重。 该方式既保留了

节点间的拓扑关系与相似性,又避免了稠密矩阵中大量

零值的冗余存储。
在邻接矩阵构建完成后,对其进行归一化操作,主要

通过计算图拉普拉斯矩阵 L 实现,计算公式为:

L = D
- 1

2 AD
- 1

2 (1)

式中: D 为度矩阵;A 为邻接矩阵;D
- 1

2 表示度矩阵的逆

平方根。 该归一化过程确保了图卷积操作的数值稳定

性,并使得图信号在不同拓扑结构下保持一致性,从而提

高了卷积计算的效率。
在得到归一化后的图拉普拉斯矩阵 L 后,进一步进

行图卷积操作。 图卷积的基本思想是通过矩阵乘法,将
每个节点的特征与其邻居节点的特征加权结合,从而更

新节点特征。 图卷积计算公式为:
Xout = LX in (2)

式中: X in 是输入特征;Xout 是卷积后的输出特征,表示每

个节点的新特征。 这样每个节点的表示不仅由自身决

定,还能综合邻居节点的特征进行更新。
为避免信息丢失并保持梯度流动,谱图卷积中引入

残差连接,即:
X′out = Xout + Res_Conv(X in) (3)

式中: Res_Conv(X in) 表示通过 1×1 卷积处理后的输入

特征,确保输入与输出在维度上匹配。
在卷积之后,依次采用层归一化与 Dropout 操作,以

提高训练稳定性并抑制过拟合,即:

X̂ =
X′out - μ
σ + ε

(4)

Xdrop =X̂·Bernoulli(1 - p) (5)
式中: μ和 σ分别为均值与标准差;ε为防止除 0 的常数;
p 表示丢弃率。

最后,通过 ReLU 激活函数引入非线性,提升捕捉非

线性复杂特征的建模能力。
XReLU = max(0,Xdrop) (6)
综合上述设计,谱图卷积能够通过图卷积、残差连

接、归一化、Dropout 与 ReLU 激活高效聚合图的拓扑与特

征信息。 同时,谱图卷积采用动态邻接构建避免了谱分

解带来的高计算开销,稀疏矩阵存储进一步提升了效率

与可扩展性,从而在保证稳定性与效率的同时,显著增强

了模型的特征表达能力。 具体来讲,相较于传统图卷积

方法,谱图卷积的计算复杂度从 O(n2) 降低到 O( E ),
其中 E 是图中边的数量。 对于稀疏图而言, 存在

E ≪ n2, 从而大幅减轻计算负担;同时,谱图卷积避免

了对拉普拉斯算子进行特征分解,有效规避了特征分解

在大型图结构中存在的高时间与空间开销,使得模型能

够更好地适应大规模图数据。
2)混合注意力模块

为进一步增强特征表示能力,在 I-CycleGAN 的生成

器中引入混合注意力模块,其核心思想是在通道维度和

空间维度同时建模注意力分布,以更充分地捕捉输入特

征图中的判别性信息。 该模块能够在不同层面突出关键

特征,既强化通道间的全局相关性,又提升空间维度的区

域感知能力,从而为后续故障特征建模提供更强的支撑。
混合注意力模块的整体结构如图 5 所示。 具体而

言,输入特征图 X∈ RH×W×C 首先通过通道注意力模块,生
成能够反映不同通道对任务贡献度的通道注意力权重图

C f ∈ R1×1×C;随后,再经过空间注意力模块,提取与目标

区域高度相关的空间注意力权重图 S f ∈ RH×W×1。 最终,
二者结合得到增强后的特征表示 X′ ∈ RH×W×C。 接下来,
详细描述混合注意力模块中的关键环节。

图 5　 混合注意力模块

Fig. 5　 Hybrid
 

attention
 

module

通道注意力的目标在于衡量不同通道对整体任务的

重要性。 具体而言,输入特征图 X ∈ RH×W×C 分别经过全

局平均池化与全局最大池化, 得到两个通道描述特征

Mcave
∈ R1×1×C 与Mcmax

∈ R1×1×C。 二者输入共享的多层感

知器(multilayer
 

perceptron,
 

MLP),经加和后通过 Sigmoid
激活函数生成通道注意力权重图 C f,即:

C f = σ(W1W0(Mcave
(X)) + W1W0(Mcmax

(X))) (7)
式中: σ(·) 为 Sigmoid 激 活 函 数; W0 ∈ RC×C / r 和

W1 ∈ RC / r ×C 是 MLP 中的权重矩阵; r 是压缩比。 通道注

意力机制能够自适应地突出对任务贡献更显著的通道

特征。
空间注意力旨在捕捉输入特征中与目标相关的关键

区域,抑制冗余或噪声特征。 首先,对通道加权后的特征

图 Xchannel = X × C f 进行全局平均池化和全局最大池化,得
到两个空间描述特征:Msave

∈ RH×W×1 和 Msmax
∈ RH×W×1,

随后将二者拼接形成综合特征 Msmerge
(X) = [Msave

(X),
Msmax

(X)], 再经卷积操作及 Sigmoid 激活函数处理后获
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得空间注意力权重图 S f。 空间注意力的计算公式表

示为:
S f = σ(Conv2d([Msave

(X),Msmax
(X)])) (8)

最终,输入特征图在通道与空间注意力的共同作用

下完成加权融合,得到增强后的特征表示 X′,即:
X′ = X × C f × S f (9)
通过这种级联式融合,通道注意力能够识别不同特

征维度的相对贡献,而空间注意力则引导网络聚焦于关

键区域。 二者协同作用,使特征表示兼具全局判别性与

局部敏感性,从而显著提升模型在故障诊断中的特征建

模及表示能力。
2. 3　 目标函数设计

　 　 为提升生成图像的真实性与多样性,在 I-CycleGAN
的目标函数设计中引入多重约束,包括对抗损失、循环一

致性损失以及分类损失。 综合上述损失,I-CycleGAN 的

总体优化目标函数为:
L total = LGAN + Lcycle + Lclass (10)

式中: LGAN 为对抗损失;Lcycle 为循环一致性损失;Lclass 为

分类损失。
接下来将分别对各个损失函数进行详细说明。
1)对抗损失

对抗损失是对抗性学习的核心,旨在实现不同域之

间的图像分布映射。 由于 I-CycleGAN 包含两个生成器

和两个判别器,其对抗损失可表示为:
LGAN = LGAN_DA

+ LGAN_DB
=

Ea ~Pdata(a) [logDA(a)] + Eb ~Pdata(b) [log(1 - DA(GBA(b)))] +
Eb ~Pdata(b) [logDB(b)] + Ea ~Pdata(a) [log(1 - DB(GAB(a)))]

(11)
式中: GAB 表示从域 A 映射到域 B 的生成器, GBA 与

之对称。 生成器的目标是最小化对抗损失,使生成的

虚假图像尽可能接近真实图像分布;判别器的目标则

是最大化对抗损失,以保持区分真实与虚假图像的

能力。
2)循环一致性损失

为保证跨域映射的稳定性与可逆性,引入循环一致

性损失:
Lcycle = Lcycle_A + Lcycle_B =

Ea ~ Pdata(a) [‖GBA(GAB(a)) - a‖1] +
Eb ~ Pdata(b) [‖GAB(GBA(b)) - b‖1] (12)
式中:‖·‖1 表示 l1 范数。 通过该约束,模型能够在域间

映射的同时保持真实图像与重构图像的一致性,从而提

升生成结果的稳定性。
3)分类损失

在判别器 DAB 中,引入交叉熵损失对图像 􀭹a 与图像 􀭴b
进行二元分类,分类损失 Lclass 表达式为:

Lclass = E􀭹a ~ Pdata(􀭹a) [logDAB(􀭹a)] +

E􀭴b ~ Pdata(􀭴b) [log(1 - DAB(GBA( 􀭴b)))] +

E􀭴b ~ Pdata(􀭴b) [logDAB( 􀭴b)] +

E􀭹a ~ Pdata(􀭹a) [log(1 - DAB(GAB(􀭹a)))] (13)

式中: Pdata(􀭹a) 是真实图像 a和虚假图像 â之间的联合分

布;Pdata( 􀭴b) 是真实图像 b和虚假图像 b̂之间的联合分布,
定义为:

Pdata(􀭹a) = μPdata(a) + (1 - μ)Pdata[GBA(b)] (14)

Pdata( 􀭴b) = μPdata(b) + (1 - μ)Pdata[GAB(a)] (15)
式中: μ 是新联合分布中真实图像与虚假图像的比例。

3　 实验验证

3. 1　 数据集描述

　 　 为全面验证所提出方法 I-CycleGAN 在数据不均衡

条件下智能故障诊断中的有效性与鲁棒性,选取了两个

典型实验数据集进行分析与对比。 第 1 个为北京交通大

学—轨 道 自 主 运 行 ( Beijing
 

Jiaotong
 

University-rail
 

autonomous
 

operations,BJTU-RAO)转向架数据集,来源于

北京交通大学地铁列车转向架传动系统实验平台[17] ,能
够真实反映轨道交通装备在不同工况下的典型故障特

征;第 2 个为苏州大学滚动轴承数据集,基于标准化试验

台获取[18] ,涵盖多种故障模式与损伤程度,为模型验证

提供实验支撑。
数据集 1:BJTU-RAO

 

转向架数据集。 北京交通大学

地铁列车转向架传动系统故障模拟实验台由电机、斜齿

轮减速箱、加速度传感器、声音传感器、轴箱以及转速传

感器等主要部件构成,其整体布局如图
 

6 所示。
输入轴的转速通过转速传感器进行实时测量,减速

齿轮箱采用斜齿轮传动形式,其中驱动齿轮齿数为 16;
从动齿轮齿数为 107; 驱动齿轮的支撑轴承型号为

HRB
 

32305;轴箱轴承型号为 HRB
 

352213。 数据集中包

含健康状态和多类典型轴箱轴承故障状态,包括外圈加

滚动体故障、单一滚动体故障和外圈故障,分别在 3 种不

同转速下(1
 

500、2
 

000 和 3
 

000
 

rpm)进行采集。 实验中,
通过调整工况实现多种运行状态下的信号采集,保证数据

的多样性和代表性。 数据集 1 的详细信息如表 1 所示。
数据集 2:苏州大学滚动轴承数据集。 数据集从苏

州大学滚动轴承试验台采集得到(如图 7 所示)。
该试验台由团队自主搭建,主要由驱动电机、联轴

器、被测轴承、减速器和加速度传感器组成,其中被测轴

承型号为 NJ204ETNSK。 实验过程中,通过调节螺母来

控制加载状态,并使用负载计对实际承载进行测量。 在

本文实验条件下,设置载荷为 2. 4
 

kN,转速为 1
 

200
 

rpm。
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图 6　 BJTU-RAO 转向架实验台

Fig. 6　 BJTU-RAO
 

bogie
 

test
 

bench

表 1　 BJTU-RAO 数据集

Table
 

1　 BJTU-RAO
 

dataset (rpm)

健康状态类型 转速

外圈加滚动体故障 1
 

500

外圈故障 1
 

500

滚动体故障 1
 

500

外圈加滚动体故障 2
 

000

外圈故障 2
 

000

滚动体故障 2
 

000

外圈加滚动体故障 3
 

000

外圈故障 3
 

000

滚动体故障 3
 

000

图 7　 苏州大学滚动轴承实验台

Fig. 7　 Rolling
 

bearing
 

test
 

bench
 

of
 

Soochow
 

University

为了全面覆盖不同的故障模式,实验中设计并采集了

7 类损伤状态:0. 2
 

mm 内圈故障、0. 2
 

mm 滚子故障、
0. 2

 

mm 外圈故障、0. 2
 

mm 内圈与滚子复合故障、0. 2
 

mm
内圈与外圈复合故障、0. 4

 

mm 内圈故障、
 

0. 4
 

mm 外圈故

障。 数据集 2 的详细信息如表 2 所示。
由于 I-CycleGAN 模型需要以图像形式作为输入,因

此采集的时域振动信号先经过连续小波变换转化为二

　 　 　 　 表 2　 苏州大学轴承数据集

Table
 

2　 Soochow
 

University
 

bearing
 

dataset
(mm)

健康状态类型 故障尺寸

内圈加滚子故障 0. 2

内圈加外圈故障 0. 2

内圈故障 0. 2

外圈故障 0. 2

滚子故障 0. 2

内圈故障 0. 4

外圈故障 0. 4

维时频图,再进一步转换为固定尺寸的三通道 RGB 图

像。 该转换过程在 MATLAB 环境下实现,RGB 图像被存

储并用于后续的特征提取与故障分类实验。
特别需要强调的是,测试集仅包含真实采集的样本,

且与训练集在原始时域数据上完全不重叠,不包含任何

生成数据,避免潜在的信息泄漏问题。 这一设计保证了

实验结果的客观性和公平性,使得模型的评估更具科学

性和可信度。
3. 2　 图像生成性能评估

　 　 为全面验证 I-CycleGAN 在数据不均衡条件下的图像

生成能力,本节基于 3. 1 节所述数据集开展实验,并与多种

主流 生 成 对 抗 网 络 进 行 对 比, 包 括 FP-CycleGAN、
CycleGAN、DualGAN[19] 、DiscoGAN[20] 和 LoFGAN。 通过对比

分析,验证所提方法在不同实验场景下的优势与适用性。
为实现客观的量化评估,本文选取 3 项常用指标对

生成结果进行评价: FID ( Fr􀆧chet
 

inception
 

distance )、
LPIPS( learned

 

perceptual
 

image
 

patch
 

similarity) 和 SSIM
(structural

 

similarity
 

index
 

measure) [21] ,对生成图像的质

量进行定量评估,从而全面验证提出方法的优越性。
FID、SSIM、LPIPS 能够用于衡量生成图像与真实图像之
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间的相似性。 总体而言,FID 与 LPIPS 值越小、SSIM 值

越大,均表明生成图像与真实图像的相似性越高,图像质

量越优。
实验中,I-CycleGAN 的主要参数设置为:训练轮数为

300,学习率固定为 0. 000 1,优化器为 Adam,其动量参数

设为 0. 5,判别器训练图像缓冲比例设定为 μ = 0. 9。 实

验硬 件 平 台 包 括
 

E5-2690v3
 

CPU、 96
 

GB 内 存 以 及

NVIDIA
 

GeForce
 

2080Ti
 

GPU。
表 3 给出了提出方法与对比方法在数据集 1 和数据

集 2 上的量化评估结果。

表 3　 6 种方法的定量评估指标计算结果

Table
 

3　 Quantitative
 

evaluation
 

metrics
 

calculation
 

of
 

six
 

methods

方法
FID LPIPS SSIM

数据集 1 数据集 2 数据集 1 数据集 2 数据集 1 数据集 2

I-CycleGAN 33. 158( ±1. 430) 68. 195( ±0. 520) 0. 229( ±0. 013) 0. 167( ±0. 019) 0. 793( ±0. 012) 0. 890( ±0. 014)

FP-CycleGAN[16] 115. 403( ±3. 450) 108. 295( ±2. 230) 0. 283( ±0. 029) 0. 188( ±0. 017) 0. 792( ±0. 011) 0. 884( ±0. 019)

CycleGAN[15] 156. 543( ±4. 210) 141. 380( ±3. 630) 0. 331( ±0. 069) 0. 286( ±0. 028) 0. 764( ±0. 043) 0. 781( ±0. 057)

DualGAN[19] 132. 321( ±2. 510) 105. 877( ±2. 230) 0. 301( ±0. 054) 0. 269( ±0. 036) 0. 781( ±0. 063) 0. 795( ±0. 093)

DiscoGAN[20] 141. 380( ±6. 780) 120. 343( ±2. 670) 0. 286( ±0. 093) 0. 299( ±0. 033) 0. 781( ±0. 095) 0. 771( ±0. 102)

LoFGAN[12] 150. 982( ±4. 190) 115. 686( ±2. 100) 0. 321( ±0. 057) 0. 285( ±0. 028) 0. 772( ±0. 053) 0. 779( ±0. 061)

　 　 从表 3 中可以清晰看出,提出方法 I-CycleGAN 在

3 项指标(FID、SSIM、LPIPS)上均取得最优表现。 具体而

言,在 FID 指标上,I-CycleGAN 在数据集 1 和 2 中分别为

33. 158 和 68. 195,远低于其他方法,表明 I-CycleGAN 生

成图像的分布与真实数据更加接近,具有更高的真实性。
在 LPIPS 指标上,I-CycleGAN 分别达到 0. 229 与 0. 167,
相比其他方法优势显著,说明其生成结果在感知相似性

上更贴近真实样本,质量更高。 与此同时,在 SSIM 指标

上,I-CycleGAN 在数据集 1 和 2 中分别为 0. 793 与

0. 890,均高于对比方法,说明其能够更好地保持图像结

构信息与细节特征。
总体来说,对比方法 FP-CycleGAN 在 SSIM 指标上表

现相对接近提出方法 I-CycleGAN,但在 FID 和 LPIPS 上

仍存 在 较 大 差 距。 对 比 方 法 CycleGAN、 DualGAN、
DiscoGAN 和 LoFGAN 则在 3 项指标上均显著落后于

I-CycleGAN,尤其是在 FID 与 LPIPS 指标上,差距最为明

显,进一步凸显了提出方法在生成真实性和多样性上的

优势。
综上所述,I-CycleGAN 在两个数据集和 3 个评价指

标下均展现出稳定的性能优势,能够生成更接近真实分

布且结构细节更清晰的图像,为数据不平衡下的故障诊

断任务提供了更高质量的数据支撑。
3. 3　 消融实验分析

　 　 为了进一步探究谱图卷积与混合注意力模块对模型

性能的贡献,本文进行了消融实验,分别构建了两种变体

模型:一种为仅保留谱图卷积而移除混合注意力模块的

I-CycleGAN-w / o
 

H;另一种为仅使用混合注意力模块而

移除谱图卷积层的 I-CycleGAN-w / o
 

S。
表 4 展示了 I-CycleGAN 及其两种变体在数据集 1 和

2 下的量化评估结果,可以明显看出完整的 I-CycleGAN
在所有指标上均优于两种变体,验证了谱图卷积与混合

注意力模块在模型中的重要性。

表 4　 消融实验中的定量度量计算

Table
 

4　 Quantitative
 

metric
 

calculation
 

in
 

ablation
 

experiment

方法
FID LPIPS SSIM

数据集 1 数据集 2 数据集 1 数据集 2 数据集 1 数据集 2

I-CycleGAN 33. 158( ±1. 430) 68. 195( ±0. 520) 0. 229( ±0. 013) 0. 167( ±0. 019) 0. 793( ±0. 012) 0. 890( ±0. 014)

I-CycleGAN-w / o
 

H 40. 811( ±2. 310) 87. 275( ±5. 210) 0. 235( ±0. 017) 0. 172( ±0. 015) 0. 789( ±0. 011) 0. 874( ±0. 012)

I-CycleGAN-w / o
 

S 46. 555( ±3. 190) 80. 513( ±4. 690) 0. 243( ±0. 023) 0. 176( ±0. 018) 0. 762( ±0. 009) 0. 782( ±0. 023)

　 　 具体而言,在 FID 指标上, I-CycleGAN 分别取得

33. 158( 数据集 1) 与 68. 195 ( 数据集 2 ), 显著低于

I-CycleGAN-w / o
 

H 和 I-CycleGAN-w / o
 

S,说明当去除任

一模块后,生成的虚假图像与真实图像分布的接近程度

均有所下降。 在 LPIPS 指标上, I-CycleGAN 分别达到

0. 229 与 0. 167,表现最佳;而两种变体的 LPIPS 值均有
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所上升,特别是 I-CycleGAN-w / o
 

S 在数据集 1 中升至

0. 243。 在 SSIM 指标上,I-CycleGAN 同样取得最优结果,
相比之下,去除混合注意力模块的 I-CycleGAN-w / o

 

H 略

有下降,而去除谱图卷积的 I-CycleGAN-w / o
 

S 降幅更大。
这些结果充分表明,两种模块在生成图像质量和结

构保持方面均发挥了关键作用。 谱图卷积能够捕捉并聚

合图像中潜在的全局拓扑关系,增强特征的全局捕捉能

力;混合注意力模块通过通道与空间特征的联合建模,使
模型能够更有效地关注不同通道和区域的关键信息。 缺

少任一模块都会削弱模型的整体表现,而二者协同作用

时,I-CycleGAN 在生成图像的真实性上显著优于其变体。
3. 4　 数据不平衡下故障诊断性能验证

　 　 为进一步验证 I-CycleGAN 在数据不均衡条件下故

障诊断中的有效性,本文设计了 6 个逐步递增生成样本

数量的诊断任务,以评估生成样本在改善诊断性能方面

的作用。 表 5 给出了 6 个任务的具体设置。 训练集由真

实样本与生成样本共同构成,用于训练故障状态识别分

类器。 在每个任务中,均包含 42 个健康样本和 6 个真实

故障样本,故障类别的生成样本在任务 1 ~ 6 中分别为 6、
12、18、24、30 和 36 个。 这种任务设置能够有效模拟不同

程度的数据不均衡场景。

表 5　 数据不平衡下的 6 个故障诊断任务

Table
 

5　 Six
 

fault
 

diagnosis
 

tasks
 

under
 

data
 

imbalance

任务

训练集 测试集

每种故障类型的

生成 / 实际样本数

健康类型

样本数量

每种类型的

实际样本数量

任务 1 6 / 6 42 30

任务 2 12 / 6 42 30

任务 3 18 / 6 42 30

任务 4 24 / 6 42 30

任务 5 30 / 6 42 30

任务 6 36 / 6 42 30

　 　 具体地,在任务 1 中,生成样本数量有限,数据分布

仍然存在明显偏差;而随着生成样本数量逐步增加,数据

集逐渐趋于平衡。 通过对比 6 个任务的实验结果,可以

系统性地分析生成样本数量对故障诊断性能的影响,进
而验证提出方法 I-CycleGAN 在生成高质量样本和缓解

类别不均衡方面的作用。 特别是在任务 5 和 6 中,生成

样本数量已与真实样本规模相当, 能够全面检 验

I-CycleGAN 在大规模样本扩充条件下对分类器训练的支

撑能力与稳定性。 测试集则由每种类别下 30 个真实样

本组成,且与训练集无重叠,以保证评估的公平性与科

学性。

为验 证 所 提 方 法 的 性 能 优 势, 本 文 选 取 FP-
CycleGAN、CycleGAN、DualGAN、DiscoGAN 和 LoFGAN 这

5 种方法作为对比基准,并在数据集 1 和 2 的 6 个任务中

分别进行诊断准确度的对比实验。 图 8 和 9 展示了不同

方法在 6 个任务下的诊断准确率。 在所有任务中,
I-CycleGAN 的诊断准确率始终高于对比方法。 这表明

I-CycleGAN 在有限样本条件下更能生成与真实样本在特

征层面高度一致的高质量样本,从而显著提升故障分类

模型的判别能力。 同时,在数据集 1 和数据集 2 中,
I-CycleGAN 均表现出优于对比方法的稳定优势,说明所

提方法不仅在单一数据集上有效,而且具有良好的跨数

据集适应性。

图 8　 不同方法在数据集 1 中 6 个任务的诊断准确率

Fig. 8　 Diagnosis
 

accuracies
 

of
 

different
 

methods
 

for
 

six
 

tasks
 

of
 

case
 

1

图 9　 不同方法在数据集 2 中 6 个任务的诊断准确率

Fig. 9　 Diagnosis
 

accuracies
 

of
 

different
 

methods
 

for
 

six
 

tasks
 

of
 

case
 

2

此外,在任务 1 中,所有方法的诊断准确率均明显偏

低,反映了数据不均衡对分类性能的负面影响。 随着生成

样本数量逐步增加,准确率整体呈上升趋势,验证了生成

样本在改善数据不均衡和提升诊断精度方面的关键作用。
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综上所述,实验结果充分证明了 I-CycleGAN 在故障

诊断中的优势,其生成的高保真样本与真实样本在特征

层面高度一致,为分类模型提供了更加平衡且具有代表

性的训练数据,是应对工业应用中数据不均衡问题的切

实可行的解决方案。

4　 结　 　 论

　 　 针对机械装备在复杂工况下普遍存在的数据不均衡

问题, 本研究提出了改进循环一致生成对抗网 络

(I-CycleGAN),通过引入谱图卷积层与混合注意力模块,
显著提升了生成图像的整体质量。 具体而言,谱图卷积

基于稀疏邻接矩阵建模全局像素依赖,有效弥补了传统

卷积在远程特征捕捉方面的不足,同时稀疏图结构降低

了计算复杂度与存储需求;混合注意力模块在通道与空

间层面动态设置权重,突出关键区域并增强特征表达。
基于地铁列车转向架与苏州大学轴承数据集的实验结果

表明, I-CycleGAN 在图像生成质量 ( FID、 SSIM、 LPIPS
等)和故障分类准确率方面均显著优于 5 种对比方法,有
效缓解了数据不均衡对诊断性能的限制。 综上所述,
I-CycleGAN 在生成样本的真实性、多样性和诊断精度方

面展现出突出优势,为工业领域应对数据不均衡问题提

供了具有推广价值的技术路径。
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