基于残差自注意力连接的深度电学层析成像方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R318 TH701

基金项目:

国家自然科学基金(61301246)项目资助


Electrical tomography imaging method based on Deep CNN with residual self-attention skip connection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电学层析重建(ET)的“软场”特性和逆问题求解的病态性所造成的边界伪影和空间分辨率低的问题,本文提出一 种基于迭代展开的预重建模块和改进的注意力深度 U 形卷积神经网络(CNN)的深度成像方法。 其中,预重建模块是由牛顿— 拉夫逊迭代算法得到的 4 层反卷积神经网络;深度 U 形 CNN 模块中,在特征提取和重建模块中加入残差连接,用于缓解深度 CNN 模型中的梯度消失问题,同时引入自注意力跳跃连接实现对全局特征和局部特征的抽象融合,使模型更好地表达图像重 建问题的非线性特征。 重建结果表明空间分辨率高,内含物边界清晰,重建相对误差为 0. 10,相关系数为 0. 93,说明本方法可 以有效改善 ET 图像的质量,为无损测量与检测可视化提出了一种可靠方法。

    Abstract:

    The boundary artifacts and low-spatial resolution in reconstruction due to the ‘soft-field’ and the ill-posed nature of the inverse problems imaging with electrical tomography ( ET) are considered. This article designs a novel deep learning-based ET image reconstruction framework consisted of an unrolling iteration pre-reconstructor and a modified attention-based deep convolutional neural network ( CNN) postprocessor. Specifically, the pre-reconstructor, a four-layers deconvolution network, is unrolled by the NewtonRaphson algorithm. The U-Net is the backbone of the post-processor and two carefully designed feature connections are introduced. Firstly, the residual connection is added to the feature extraction and image reconstruction block which could alleviate the reverse gradient vanishing problems. Secondly, the residual self-attention skip connections are proposed which could better fuse the global and local information. These above-mentioned strategies can better express the nonlinear characteristics of ET inverse problems. The visual results show that the reconstruction using the proposed methods has higher spatial resolution and more clear shape representation (i. e. , sharper boundary features and clear medium distributions). The quantity results (RE= 0. 10 and CC= 0. 93 in test performance) indicate that the proposed method could improve the imaging results effectively. A reliable method for nondestructive measurement and visualization is promoted.

    参考文献
    相似文献
    引证文献
引用本文

王子辰,陈晓艳,王 倩,王 迪,谢 娜.基于残差自注意力连接的深度电学层析成像方法[J].仪器仪表学报,2023,44(5):288-301

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-08-17
  • 出版日期: